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Technical Analysis
Attack chain

APT41 employs DLL sideloading as a means of executing DodgeBox. They utilize a legitimate
executable (taskhost.exe), signed by Sandboxie, to sideload a malicious DLL (sbiedll.dll). This
malicious DLL, DodgeBox, serves as a loader and is responsible for decrypting a second stage
payload from an encrypted DAT file (sbiedll.dat). The decrypted payload, MoonWalk functions as a
backdoor that abuses Google Drive for command-and-control (C2) communication. The figure

below illustrates the attack chain at a high level.
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Figure 1: Attack chain used to deploy the DodgeBox loader and MoonWalk backdoor.

DodgeBox analysis



DodgeBox, a reflective DLL loader written in C, showcases similarities to StealthVector in terms of
concept but incorporates significant improvements in its implementation. It offers various
capabilities, including decrypting and loading embedded DLLs, conducting environment checks and
bindings, and executing cleanup procedures. What sets DodgeBox apart from other malware is its
unique algorithms and techniques.

During our threat hunting activities, we came across two DodgeBox samples that were designed to
be sideloaded by signed legitimate executables. One of these executables was developed by
Sandboxie (SandboxieWUAU. exe), while the other was developed by AhnLab. All exports within the
DLL point to a single function that primarily invokes the main function of the malware, as

illustrated below:

void SbieD11l Hook()

{
if ( dwExportCalled )

{
Sleep(OxFFFFFFFF);

}

else

{
hSbieDll = hSbieD11;
dwExportCalled = 1;

MalwareMain();

}

s

MalwareMain implements the main functionality of DodgeBox, and can be broken down into three

main phases:
1. Decryption of DodgeBox’s configuration

DodgeBox employs AES Cipher Feedback (AES-CFB) mode for encrypting its configuration. AES-
CFB transforms AES from a block cipher into a stream cipher, allowing for the encryption of data
with different lengths without requiring padding. The encrypted configuration is embedded within
the . data section of the binary. To ensure the integrity of the configuration, DodgeBox utilizes
hard-coded MDs5 hashes to validate both the embedded AES keys and the encrypted configuration.
For reference, a sample of DodgeBox's decrypted configuration can be found in the Appendix
section of this blog. We will reference this sample configuration using the variable Config in the
following sections.

2. Execution guardrails and environment setup

After decrypting its configuration, DodgeBox performs several environment checks to ensure it is




running on its intended target.
Execution guardrail: Argument check

DodgeBox starts by verifying that the process was launched with the correct arguments. It scans
the argv parameter for a specific string defined in Config.szArgFlag. Next, it calculates the MD5
hash of the subsequent argument and compares it to the hash specified

in Config.rgbArgFlagValueMD5. In this case, DodgeBox expects the arguments to include - -type

driver. If this verification check fails, the process is terminated.
Environment setup: API Resolution

Afterwards, DodgeBox proceeds to resolve multiple APIs that are utilized for additional
environment checks and setup. Notably, DodgeBox employs a salted FNV1a hash for DLL and
function names. This salted hash mechanism aids DodgeBox in evading static detections that
typically search for hashes of DLL or function names. Additionally, it enables different samples of
DodgeBox to use distinct values for the same DLL and function, all while preserving the integrity of

the core hashing algorithm.

The following code shows DodgeBox calling its ResolveImport function to resolve the address

of LdrLoadD11, and populating its import table.

// ResolveImport takes in (wszDllName, dwDl1lNameHash, dwFuncNameHash)
sImportTable->ntdll_LdrLoadDll =
ResolveImport(L"ntdl1l", OxFEOBO7BO, OxCA7BB6AC);

Inside the ResolveImport function, DodgeBox utilizes the FNV1a hashing function in a two-step
process. First, it hashes the input string, which represents a DLL or function name. Then, it hashes a
salt value separately. This two-step hashing procedure is equivalent to hashing the concatenation of

the input string and salt. The following pseudo-code represents the implementation of the salted
hash:

dwHash = ©0x811C9DC5; // Standard initial seed for FNVla
pwszInputString Char = pwszInputString;

cchInputString = -1LL;

do

++cchInputString;
while ( pwszInputString[cchInputString] );
pwszInputStringEnd = (pwszInputString + 2 * cchInputString);
if ( pwszInputString < pwszInputStringEnd )

{
do // Inlined FNV1la hash

{
chChar = *pwszInputString_ Char;

pwszInputString Char = (pwszInputString Char + 1);




dwHash = 0x1000193 * (dwHash ~ chChar);

}
while ( pwszInputString Char < pwszInputStringEnd );

}
v1l7 = &g HashSaltPostfix; // Salt value: CB 24 B4 BA

do // Inlined FNV1a hash, use previous hash as seed

{

v18 *v17;
vl7 = (v17 + 1);
dwHash = 0x1000193 * (dwHash ~ v18);

}
while ( v17 < g HashSaltPostfix End );

A Python script to generate the salted hashes is included in the Appendix.

In addition to the salted hash implementation, DodgeBox incorporates another noteworthy feature
in its ResolveImport function. This function accepts both the DLL name as a string and its hash
value as arguments. This redundancy appears to be designed to provide flexibility, allowing
DodgeBox to handle scenarios where the target DLL has not yet been loaded. In such cases,
DodgeBox invokes the LoadLibraryW function with the provided string to load the DLL

dynamically.

Furthermore, DodgeBox effectively handles forwarded exports and exports by ordinals. It
utilizes ntd11!LdrLoadD11 and ntd11!LdrGetProcedureAddressEx when necessary to resolve the
address of the exported function. This approach ensures that DodgeBox can successfully resolve and

utilize the desired functions, regardless of the export method used.
Environment setup: DLL unhooking

Once DodgeBox has resolved the necessary functions, it proceeds to scan and unhook DLLs that are
loaded from the System32 directory. This process involves iterating through the . pdata section of
each DLL, retrieving each function’s start and end addresses, and calculating an FNV1a hash for the
bytes of each function. DodgeBox then computes a corresponding hash for the same function's bytes
as stored on disk. If the two hashes differ, potential tampering can be detected, and DodgeBox will

replace the in-memory function with the original version from the disk.

For each DLL that has been successfully scanned, DodgeBox marks the
corresponding LDR_DATA_TABLE_ENTRY by clearing the ReservedFlags6 field and setting the upper

bit to 1. This marking allows DodgeBox to avoid scanning the same DLL twice.
Environment setup: Disabling CFG

Following that, DodgeBox checks if the operating system is Windows 8 or newer. If so, the code
verifies whether Control Flow Guard (CFG) is enabled by calling GetProcessMitigationPolicy
with the ProcessControlFlowGuardPolicy parameter. If CFG is active, the malware attempts to



disable it.

To achieve this, DodgeBox locates the LdrpHandleInvalidUserCallTarget function
within ntd11.d11 by searching for a specific byte sequence. Once found, the malware patches this

function with a simple jmp rax instruction:

ntdll!LdrpHandleInvalidUserCallTarget:
00007ffe fc8cfO70 48ffe0 jmp rax
P0007ffe fc8cfB73 cc int 3
00007ffe fc8cfo74 90 nop

CFG verifies the validity of indirect call targets. When a CFG check
fails, LdrpHandleInvalidUserCallTarget is invoked, typically raising an interrupt. At this point,

the rax register contains the invalid target address. The patch modifies this behavior, calling the

target directly instead of raising an interrupt, thus bypassing CFG protection.

In addition, DodgeBox replaces msvcrt! guard check _icall fptr withmsvcrt!
_DebugMallocator<int>::~_DebugMallocator<int>, a function that returns o to disable the

CFG check performed by msvcrt.
Execution guardrail: MAC, computer name, and user name checks

Finally, DodgeBox performs a series of checks to verify if it is configured to run on the current
machine. The malware compares the machine’s MAC address against Config.rgbTargetMac, and
compares the computer name against Config.wszTargetComputerName. Depending on

the Config.fDoCheckIsSystem flag, DodgeBox checks whether it is running with SYSTEM

privileges. If any of these checks fail, the malware terminates execution.
3. Payload decryption and environment keying

Payload decryption

In the final phase, DodgeBox commences the decryption process for the MoonWalk payload DAT
file. The code starts by inspecting the first four bytes of the file. If these bytes are non-zero, it
signifies that the DAT file has been tied to a particular machine, (which is described below).
However, if the DAT file is not machine-specific, DodgeBox proceeds to decrypt the file using AES-
CFB encryption, utilizing the key parameters stored in the configuration file. In the samples
analyzed by ThreatLabz, this decrypted DAT file corresponds to a DLL, which is the MoonWalk
backdoor.

Environment keying of the payload

After the decryption process, DodgeBox takes the additional step of keying the payload to the
current machine. It accomplishes this by re-encrypting the payload using
the Config.rgbAESKeyForDatFile key. However, in this specific scenario, the process deviates from

the configuration file's IV (Initialization Vector). Instead, it utilizes the MD5 hash of the current
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machine's GUID as the AES IV. This approach guarantees that the decrypted DAT file cannot be
decrypted on any other machine, thus enhancing the payload's security.

Loading the payload using DLL hollowing

Next, DodgeBox reflectively loads the payload using a DLL hollowing technique. At a high level, the
process begins with the random selection of a host DLL from the System32 directory, ensuring it is
not on a blocklist (DLL blocklist available in the Appendix section) and has a sufficiently large .text
section. A copy of this DLL is then created at C:
\Windows\Microsoft.NET\assembly\GAC_MSIL\System.Data.Trace\v4.0 4.0.0.0__ <random
bytes from pcrt4!UuidCreate>\<name of chosen DLL>.d1ll. DodgeBox modifies this copy by
disabling the NX flag, removing the reloc and TLS sections, and patching its entry point with a

simple return 1.

Following the preparation of the host DLL for injection, DodgeBox proceeds by zeroing the PE
headers, and the IMAGE_DATA_DIRECTORY structures corresponding to the import, reloc,

and debug directories of the payload DLL. This modified payload DLL is then inserted into the
previously selected host DLL. The resulting copy of the modified host DLL is loaded into memory
using the NtCreateSection and NtMapViewOfSection APIs.

Once the DLL is successfully loaded, DodgeBox updates the relevant entries in the Process
Environment Block (PEB) to reflect the newly loaded DLL. To further conceal its activities,
DodgeBox overwrites the modified copy of the host DLL with its original contents, making it appear

as a legitimate, signed DLL on disk. Finally, the malware calls the entrypoint of the payload DLL.

Interestingly, if the function responsible for DLL hollowing fails to load the payload DLL, DodgeBox
employs a fallback mechanism. This fallback function implements a traditional form of reflective

DLL loading using NtAllocateVirtualMemory and NtProtectVirtualMemory.

At this stage, the payload DLL has been successfully loaded, and control is transferred to the
payload DLL by invoking the first exported function.

Call stack spoofing

There is one last technique employed by DodgeBox throughout all three phases discussed
above: call stack spoofing. Call stack spoofing is employed to obscure the origins of API calls,
making it more challenging for EDRs and antivirus systems to detect malicious activity. By
manipulating the call stack, DodgeBox makes API calls appear as if they originate from trusted
binaries rather than the malware itself. This prevents security solutions from gaining contextual

information about the true source of the API calls.

DodgeBox specifically utilizes call stack spoofing when invoking Windows APIs that are more likely
to be monitored. As an example, it directly calls Rt1InitUnicodeString, a Windows API that only

performs string manipulation, instead of using stack spoofing.



KsImportTable—>ntdll_RtIInitUnicodeString)(v25, v26);

However, call stack spoofing is used when calling NtAllocateVirtualMemory, an API known to be

abused by malware, as shown below:

-

9,
6LL,

CallFunction(
sImportTable->ntdll_NtAllocateVirtualMemory,
// Unused

// Number of parameters

// Parameters to the API
-1LL, &pAllocBase, OLL, &dwSizeOfImage, ©x3000, PAGE_READWRITE)

// API to call

The technique mentioned above can be observed in the figures below. In the first figure, we can see

a typical call stack when explorer.exe invokes the CreateFileW function. The system monitoring tool,

SysMon, effectively walks the call stack, enabling us to understand the purpose behind this API call

and examine the modules and functions involved in the process.

Ko FLTMGR.SYS FitpPerformPreCallbacks + 0x2fd Oxfffff80cb44d555d C:\Windows\System32\drivers\FLTMGR.SYS
K1 FLTMGR.SYS FitpPassThroughinternal + 0x8c Oxfffff80cb44d50bc  C:\Windows\System32\drivers\FLTMGR.SYS
K2 FLTMGR.SYS FitpCreate + Ox2e5 Oxfffff80cb450d545 C:\Windows\System32\drivers\FLTMGR.SYS
K3 ntoskrnl.exe lofCallDriver + 0x59 Oxfffff8037c36e189 C:\Windows\system32\ntoskrnl.exe

K4 ntoskrnl.exe loCallDriverWithTracing + 0x34 Oxfffff8037c3151f4 C:\Windows\system32\ntoskrnl.exe

K5 ntoskrnl.exe lopParseDevice + 0x632 Oxfffff8037c7e51a2 C:\Windows\system32\ntoskrnl.exe

Keé ntoskrnl.exe ObpLookupObjectName + 0x719 Oxfffff8037c85c029 C:\Windows\system32\ntoskrnl.exe

K7 ntoskrnl.exe ObOpenObjectByNameEx + Ox1df Oxfffff8037c85a62f C:\Windows\system32\ntoskrnl.exe

K8 ntoskrnl.exe lopCreateFile + 0x404 Oxfffff8037c7c0874 C:\Windows\system32\ntoskrnl.exe

Ko ntoskrnl.exe NtCreateFile + 0x79 Oxfffff8037c7c0459 C:\Windows\system32\ntoskrnl.exe

K 10  ntoskml.exe KiSystemServiceCopyEnd + 0x25 Oxfffff8037c475085 C:\Windows\system32\ntoskrnl.exe

U 11 ntdidi NtCreateFile + 0x14 0x7ffefc8df034 C:\Windows\SYSTEM32\ntdll.dll

U 12 KERNELBASE.dIl CreateFilelnternal + 0x2f6 Ox7ffef8a8fb26 C:\Windows\System32\KERNELBASE dll

U 13 KERNELBASE.dIl CreateFileW + 0x66 Ox7ffef8a8f816 C:\Windows\System32\KERNELBASE dll
U[14_ windowsstoragedl _ CCachediNIFie-load+0x59  Ox7Mef941ad49  C\Windows\System32windows storagedi |
U 15  windows storage.dlil CPrivateProfileCache::_AddNewINIFromFile + 0x67 0x7ffef941ac1b C:\Windows\System32\windows.storage.dll
U 16  windows storage.dll CPrivateProfile::Initialize + 0x3bd 0x7ffef9443c7d C:\Windows\System32\windows storage.dll
U 17  windows.storage.dil SHGetCachedPrivateProfile + Ox6e 0x7ffef94839f6 C:\Windows\System32\windows storage.dll
U 18  windows.storage.dil CFSFolder::_GetDesktoplni + 0x73 0x7ffef94838bb C:\Windows\System32\windows.storage.dll
U 19  windows storage.dil CFSFolder::_DiscoverlLocalizedName + 0x5a9 0x7ffef943b2a9 C:\Windows\System32\windows.storage.dll
U 20 windows.storage.dil CFSFolder::_CreatelDList + 0x130 0x7ffef943a5d0 C:\Windows\System32\windows storage.dll
U 21 windows storage.dil CFSFolder::ParseDisplayName + 0x911 0x7ffef9438be1 C:\Windows\System32\windows storage.dll
U 22 shiwapidi IShellFolder_ParseDisplayName + 0x76 0x7ffef9a97886 C:\Windows\System32\shiwapi.dil

U 23  explorerframe.dil GetReallDL + 0x107 Ox7ffee11394af C:\Windows\system32\explorerframe.dll

U 24  explorerframe.dil SimpleToReallDListWithContext + 0x9b 0x7ffee1139997 C:\Windows\system32\explorerframe.dil

U 25 explorerframe.dil CNscChangeNotifyTask::_ConvertIDList + 0x17d ~ Ox7ffee10c7a7d C:\Windows\system32\explorerframe.dll

U 26 explorerframe.di CNscChangeNotifyTask::InternalResumeRT + 0x19 0x7ffee10c71a9 C:\Windows!\system32\explorerframe.dll

U 27  explorerframe.dil CRunnableTask::Run + 0xb2 Ox7ffee0ff70c2 C:\Windows\system32\explorerframe.dll

U 28  windows.storage.dlil CShellTask:TT_Run + 0x3c Ox7ffef94ab3ec C:\Windows\System32\windows storage.dll
U 29  windows storage.dl CShellTaskThread:: ThreadProc + Oxdd 0Ox7ffef94ab0a5 C:\Windows\System32\windows storage.dll
U 30 windows.storage.dil CShellTaskThread::s_ThreadProc + 0x35 0Ox7ffef94aaf85 C:\Windows\System32\windows storage.dll
U 31 shcoredil ExecuteWorkltemThreadProc + 0x16 Ox7ffef9d52ac6 C:\Windows\System32\shcore.dll

U 32 ntdidi RtipTpWorkCallback + 0x165 0x7ffefc89c4dS C:\Windows\SYSTEM32\ntdll.dll

U 33 ntdidl TppWorkerThread + 0x644 0Ox7ffefc85bec4 C:\Windows\SYSTEM32\ntdIl.dll

U 34 KERNEL32.DLL BaseThreadInitThunk + 0x14 Ox7ffefbe27e94 C:\Windows\System32\KERNEL32.DLL

U 35 ntdidi RtlUserThreadStart + 0x21 Ox7ffefc8a7ad1 C:\Windows\SYSTEM32\ntdll.dll
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Figure 2: Normal example of stack trace from explorer.exe calling CreateFilel.

In contrast, the next figure shows the call stack recorded by SysMon when DodgeBox uses stack
spoofing to call the CreateFileW function. Notice that there is no indication of DodgeBox’s modules
that triggered the API call. Instead, the modules involved all appear to be legitimate Windows

modules.
Frame Module Location Address Path
Ko FLTMGR.SYS FitpPerformPreCallbacks + Ox2fd Oxfffff80cb44d555d C:\Windows\System32\drivers\FLTMGR.SYS
K1 FLTMGR.SYS FitpPassThroughinternal + Ox8c Oxfffff80cb44d50bc  C:\Windows\System32\drivers\FLTMGR.SYS
K2 FLTMGR.SYS FlitpCreate + 0x2e5 Oxfffff80cb450d545 C:\Windows\System32\drivers\FLTMGR.SYS
K3 ntoskmlexe  lofCallDriver + 0x59 Oxfffff8037c36e189 C:\Windows\system32\ntoskrnl.exe
K4 ntoskrnl.exe loCallDniverWithTracing + 0x34 Oxfffff8037¢3151f4 C:\Windows\system32\ntoskrnl.exe
Ks ntoskmlexe  lopParseDevice + 0x632 Oxfffff8037c7e51a2 C:\Windows\system32\ntoskrnl.exe
K6 ntoskmlexe  ObplLookupObjectName + 0x719 Oxfffff8037c85c029 C:\Windows\system32\ntoskrnl.exe
K7 ntoskmlexe  ObOpenObjectByNameEx + Ox1df Oxfffff8037c85a62f C:\Windows\system32\ntoskrnl.exe
K8 ntoskrml.exe lopCreateFile + 0x404 Oxfffff8037c7c0874 C:\Windows\system32\ntoskrnl.exe
K9 ntoskmlexe  NtCreateFile + 0x79 Oxfffff8037c7c0459 C:\Windows\system32\ntoskrnl.exe
K 10 ntoskmlexe  KiSystemServiceCopyEnd + 0x25 Oxfffff8037c475085 C:\Windows\system32\ntoskrnl.exe
U 11 ntdidi NtCreateFile + 0x14 0x7ffefc8df034 C:\Windows\System32\ntdil.dll
U 12 KemelBasedl ARI:DependencyMiniRepository:LogDMRSectionNotFound + 0x7¢ Ox7ffef8b3ca3c C:\Windows\System32\KernelBase. dll
U 13 kemel32dl BaseThreadInitThunk + 0x14 Ox7ffefbe27e94 C:\Windows\System32\kernel32 dil
U 14 ntdidi RtiUserThreadStart + 0x21 Ox7ffefc8a7ad C:\Windows\System32\ntdil.dll
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Figure 3: Stack trace of DodgeBox calling CreateFilel using the stack spoofing technique.

There is an excellent writeup of this technique, so we will only highlight some implementation

details specific to DodgeBox:

When the CallFunction is invoked, DodgeBox uses a random jmp qword ptr [rbp+48h] gadget

residing within the . text section of KernelBase.

DodgeBox analyzes the unwind codes within the . pdata section to extract the unwind size for the

function that includes the selected gadget.

DodgeBox obtains the addresses of Rt1UserThreadStart + ©x21 and BaseThreadInitThunk +

0x14, along with their respective unwind sizes.

DodgeBox sets up the stack by inserting the addresses of Rt1UserThreadStart +
0x21, BaseThreadInitThunk + ©x14, and the address of the gadget at the right positions, utilizing

the unwind sizes retrieved.

Following that, DodgeBox proceeds to insert the appropriate return address at [ rbp+48h] and
prepares the registers and stack with the necessary argument values to be passed to the API. This

preparation ensures that the API is called correctly and with the intended parameters.

Finally, DodgeBox executes a jmp instruction to redirect the control flow to the targeted API.
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