
DodgeBox | ThreatLabz

Yin Hong Chang, Sudeep Singh

Technical Analysis

Attack chain

APT41 employs DLL sideloading as a means of executing DodgeBox. They utilize a legitimate

executable (taskhost.exe), signed by Sandboxie, to sideload a malicious DLL (sbiedll.dll). This

malicious DLL, DodgeBox, serves as a loader and is responsible for decrypting a second stage

payload from an encrypted DAT file (sbiedll.dat). The decrypted payload, MoonWalk functions as a

backdoor that abuses Google Drive for command-and-control (C2) communication. The figure

below illustrates the attack chain at a high level.

Figure 1: Attack chain used to deploy the DodgeBox loader and MoonWalk backdoor.

DodgeBox analysis

DodgeBox, a reflective DLL loader written in C, showcases similarities to StealthVector in terms of

concept but incorporates significant improvements in its implementation. It offers various

capabilities, including decrypting and loading embedded DLLs, conducting environment checks and

bindings, and executing cleanup procedures. What sets DodgeBox apart from other malware is its

unique algorithms and techniques.

During our threat hunting activities, we came across two DodgeBox samples that were designed to

be sideloaded by signed legitimate executables. One of these executables was developed by

Sandboxie (SandboxieWUAU.exe), while the other was developed by AhnLab. All exports within the

DLL point to a single function that primarily invokes the main function of the malware, as

illustrated below:

void SbieDll_Hook()

{

if (dwExportCalled)

 {

 Sleep(0xFFFFFFFF);

 }

else

 {

 hSbieDll_ = hSbieDll;

 dwExportCalled = 1;

 MalwareMain();

 }

}

MalwareMain implements the main functionality of DodgeBox, and can be broken down into three

main phases:

1. Decryption of DodgeBox’s configuration

DodgeBox employs AES Cipher Feedback (AES-CFB) mode for encrypting its configuration. AES-

CFB transforms AES from a block cipher into a stream cipher, allowing for the encryption of data

with different lengths without requiring padding. The encrypted configuration is embedded within

the .data section of the binary. To ensure the integrity of the configuration, DodgeBox utilizes

hard-coded MD5 hashes to validate both the embedded AES keys and the encrypted configuration.

For reference, a sample of DodgeBox's decrypted configuration can be found in the Appendix

section of this blog. We will reference this sample configuration using the variable Config in the

following sections.

2. Execution guardrails and environment setup

After decrypting its configuration, DodgeBox performs several environment checks to ensure it is

running on its intended target.

Execution guardrail: Argument check

DodgeBox starts by verifying that the process was launched with the correct arguments. It scans

the argv parameter for a specific string defined in Config.szArgFlag. Next, it calculates the MD5

hash of the subsequent argument and compares it to the hash specified

in Config.rgbArgFlagValueMD5. In this case, DodgeBox expects the arguments to include --type

driver. If this verification check fails, the process is terminated.

Environment setup: API Resolution

Afterwards, DodgeBox proceeds to resolve multiple APIs that are utilized for additional

environment checks and setup. Notably, DodgeBox employs a salted FNV1a hash for DLL and

function names. This salted hash mechanism aids DodgeBox in evading static detections that

typically search for hashes of DLL or function names. Additionally, it enables different samples of

DodgeBox to use distinct values for the same DLL and function, all while preserving the integrity of

the core hashing algorithm.

The following code shows DodgeBox calling its ResolveImport function to resolve the address

of LdrLoadDll, and populating its import table.

// ResolveImport takes in (wszDllName, dwDllNameHash, dwFuncNameHash)

sImportTable->ntdll_LdrLoadDll =

ResolveImport(L"ntdll", 0xFE0B07B0, 0xCA7BB6AC);

Inside the ResolveImport function, DodgeBox utilizes the FNV1a hashing function in a two-step

process. First, it hashes the input string, which represents a DLL or function name. Then, it hashes a

salt value separately. This two-step hashing procedure is equivalent to hashing the concatenation of

the input string and salt. The following pseudo-code represents the implementation of the salted

hash:

dwHash = 0x811C9DC5; // Standard initial seed for FNV1a

pwszInputString_Char = pwszInputString;

cchInputString = -1LL;

do

 ++cchInputString;

while (pwszInputString[cchInputString]);

pwszInputStringEnd = (pwszInputString + 2 * cchInputString);

if (pwszInputString < pwszInputStringEnd)

{

do // Inlined FNV1a hash

 {

 chChar = *pwszInputString_Char;

 pwszInputString_Char = (pwszInputString_Char + 1);

 dwHash = 0x1000193 * (dwHash ^ chChar);

 }

while (pwszInputString_Char < pwszInputStringEnd);

}

v17 = &g_HashSaltPostfix; // Salt value: CB 24 B4 BA

do // Inlined FNV1a hash, use previous hash as seed

{

 v18 = *v17;

 v17 = (v17 + 1);

 dwHash = 0x1000193 * (dwHash ^ v18);

}

while (v17 < g_HashSaltPostfix_End);

A Python script to generate the salted hashes is included in the Appendix.

In addition to the salted hash implementation, DodgeBox incorporates another noteworthy feature

in its ResolveImport function. This function accepts both the DLL name as a string and its hash

value as arguments. This redundancy appears to be designed to provide flexibility, allowing

DodgeBox to handle scenarios where the target DLL has not yet been loaded. In such cases,

DodgeBox invokes the LoadLibraryW function with the provided string to load the DLL

dynamically.

Furthermore, DodgeBox effectively handles forwarded exports and exports by ordinals. It

utilizes ntdll!LdrLoadDll and ntdll!LdrGetProcedureAddressEx when necessary to resolve the

address of the exported function. This approach ensures that DodgeBox can successfully resolve and

utilize the desired functions, regardless of the export method used.

Environment setup: DLL unhooking

Once DodgeBox has resolved the necessary functions, it proceeds to scan and unhook DLLs that are

loaded from the System32 directory. This process involves iterating through the .pdata section of

each DLL, retrieving each function’s start and end addresses, and calculating an FNV1a hash for the

bytes of each function. DodgeBox then computes a corresponding hash for the same function's bytes

as stored on disk. If the two hashes differ, potential tampering can be detected, and DodgeBox will

replace the in-memory function with the original version from the disk.

For each DLL that has been successfully scanned, DodgeBox marks the

corresponding LDR_DATA_TABLE_ENTRY by clearing the ReservedFlags6 field and setting the upper

bit to 1. This marking allows DodgeBox to avoid scanning the same DLL twice.

Environment setup: Disabling CFG

Following that, DodgeBox checks if the operating system is Windows 8 or newer. If so, the code

verifies whether Control Flow Guard (CFG) is enabled by calling GetProcessMitigationPolicy

with the ProcessControlFlowGuardPolicy parameter. If CFG is active, the malware attempts to

disable it.

To achieve this, DodgeBox locates the LdrpHandleInvalidUserCallTarget function

within ntdll.dll by searching for a specific byte sequence. Once found, the malware patches this

function with a simple jmp rax instruction:

ntdll!LdrpHandleInvalidUserCallTarget:

00007ffe`fc8cf070 48ffe0 jmp rax

00007ffe`fc8cf073 cc int 3

00007ffe`fc8cf074 90 nop

CFG verifies the validity of indirect call targets. When a CFG check

fails, LdrpHandleInvalidUserCallTarget is invoked, typically raising an interrupt. At this point,

the rax register contains the invalid target address. The patch modifies this behavior, calling the

target directly instead of raising an interrupt, thus bypassing CFG protection.

In addition, DodgeBox replaces msvcrt!_guard_check_icall_fptr with msvcrt!

_DebugMallocator<int>::~_DebugMallocator<int>, a function that returns 0 to disable the

CFG check performed by msvcrt.

Execution guardrail: MAC, computer name, and user name checks

Finally, DodgeBox performs a series of checks to verify if it is configured to run on the current

machine. The malware compares the machine’s MAC address against Config.rgbTargetMac, and

compares the computer name against Config.wszTargetComputerName. Depending on

the Config.fDoCheckIsSystem flag, DodgeBox checks whether it is running with SYSTEM

privileges. If any of these checks fail, the malware terminates execution.

3. Payload decryption and environment keying

Payload decryption

In the final phase, DodgeBox commences the decryption process for the MoonWalk payload DAT

file. The code starts by inspecting the first four bytes of the file. If these bytes are non-zero, it

signifies that the DAT file has been tied to a particular machine, (which is described below).

However, if the DAT file is not machine-specific, DodgeBox proceeds to decrypt the file using AES-

CFB encryption, utilizing the key parameters stored in the configuration file. In the samples

analyzed by ThreatLabz, this decrypted DAT file corresponds to a DLL, which is the MoonWalk

backdoor.

Environment keying of the payload

After the decryption process, DodgeBox takes the additional step of keying the payload to the

current machine. It accomplishes this by re-encrypting the payload using

the Config.rgbAESKeyForDatFile key. However, in this specific scenario, the process deviates from

the configuration file's IV (Initialization Vector). Instead, it utilizes the MD5 hash of the current

https://www.blackhat.com/docs/us-15/materials/us-15-Zhang-Bypass-Control-Flow-Guard-Comprehensively-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Zhang-Bypass-Control-Flow-Guard-Comprehensively-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Zhang-Bypass-Control-Flow-Guard-Comprehensively-wp.pdf

machine's GUID as the AES IV. This approach guarantees that the decrypted DAT file cannot be

decrypted on any other machine, thus enhancing the payload's security.

Loading the payload using DLL hollowing

Next, DodgeBox reflectively loads the payload using a DLL hollowing technique. At a high level, the

process begins with the random selection of a host DLL from the System32 directory, ensuring it is

not on a blocklist (DLL blocklist available in the Appendix section) and has a sufficiently large .text

section. A copy of this DLL is then created at C:

\Windows\Microsoft.NET\assembly\GAC_MSIL\System.Data.Trace\v4.0_4.0.0.0__<random

bytes from pcrt4!UuidCreate>\<name of chosen DLL>.dll. DodgeBox modifies this copy by

disabling the NX flag, removing the reloc and TLS sections, and patching its entry point with a

simple return 1.

Following the preparation of the host DLL for injection, DodgeBox proceeds by zeroing the PE

headers, and the IMAGE_DATA_DIRECTORY structures corresponding to the import, reloc,

and debug directories of the payload DLL. This modified payload DLL is then inserted into the

previously selected host DLL. The resulting copy of the modified host DLL is loaded into memory

using the NtCreateSection and NtMapViewOfSection APIs.

Once the DLL is successfully loaded, DodgeBox updates the relevant entries in the Process

Environment Block (PEB) to reflect the newly loaded DLL. To further conceal its activities,

DodgeBox overwrites the modified copy of the host DLL with its original contents, making it appear

as a legitimate, signed DLL on disk. Finally, the malware calls the entrypoint of the payload DLL.

Interestingly, if the function responsible for DLL hollowing fails to load the payload DLL, DodgeBox

employs a fallback mechanism. This fallback function implements a traditional form of reflective

DLL loading using NtAllocateVirtualMemory and NtProtectVirtualMemory.

At this stage, the payload DLL has been successfully loaded, and control is transferred to the

payload DLL by invoking the first exported function.

Call stack spoofing

There is one last technique employed by DodgeBox throughout all three phases discussed

above: call stack spoofing. Call stack spoofing is employed to obscure the origins of API calls,

making it more challenging for EDRs and antivirus systems to detect malicious activity. By

manipulating the call stack, DodgeBox makes API calls appear as if they originate from trusted

binaries rather than the malware itself. This prevents security solutions from gaining contextual

information about the true source of the API calls.

DodgeBox specifically utilizes call stack spoofing when invoking Windows APIs that are more likely

to be monitored. As an example, it directly calls RtlInitUnicodeString, a Windows API that only

performs string manipulation, instead of using stack spoofing.

(sImportTable->ntdll_RtlInitUnicodeString)(v25, v26);

However, call stack spoofing is used when calling NtAllocateVirtualMemory, an API known to be

abused by malware, as shown below:

CallFunction(

 sImportTable->ntdll_NtAllocateVirtualMemory, // API to call

0, // Unused

6LL, // Number of parameters

// Parameters to the API

-1LL, &pAllocBase, 0LL, &dwSizeOfImage, 0x3000, PAGE_READWRITE)

The technique mentioned above can be observed in the figures below. In the first figure, we can see

a typical call stack when explorer.exe invokes the CreateFileW function. The system monitoring tool,

SysMon, effectively walks the call stack, enabling us to understand the purpose behind this API call

and examine the modules and functions involved in the process.

Figure 2: Normal example of stack trace from explorer.exe calling CreateFileW.

In contrast, the next figure shows the call stack recorded by SysMon when DodgeBox uses stack

spoofing to call the CreateFileW function. Notice that there is no indication of DodgeBox’s modules

that triggered the API call. Instead, the modules involved all appear to be legitimate Windows

modules.

Figure 3: Stack trace of DodgeBox calling CreateFileW using the stack spoofing technique.

There is an excellent writeup of this technique, so we will only highlight some implementation

details specific to DodgeBox:

When the CallFunction is invoked, DodgeBox uses a random jmp qword ptr [rbp+48h] gadget

residing within the .text section of KernelBase.

DodgeBox analyzes the unwind codes within the .pdata section to extract the unwind size for the

function that includes the selected gadget.

DodgeBox obtains the addresses of RtlUserThreadStart + 0x21 and BaseThreadInitThunk +

0x14, along with their respective unwind sizes.

DodgeBox sets up the stack by inserting the addresses of RtlUserThreadStart +

0x21, BaseThreadInitThunk + 0x14, and the address of the gadget at the right positions, utilizing

the unwind sizes retrieved.

Following that, DodgeBox proceeds to insert the appropriate return address at [rbp+48h] and

prepares the registers and stack with the necessary argument values to be passed to the API. This

preparation ensures that the API is called correctly and with the intended parameters.

Finally, DodgeBox executes a jmp instruction to redirect the control flow to the targeted API.

Explore more Zscaler blogs

https://labs.withsecure.com/publications/spoofing-call-stacks-to-confuse-edrs
https://labs.withsecure.com/publications/spoofing-call-stacks-to-confuse-edrs
https://labs.withsecure.com/publications/spoofing-call-stacks-to-confuse-edrs

MoonWalk: A deep dive into the updated arsenal of APT41 | Part 2

Read post

New Phishing Trends and Evasion Techniques

Read post

https://www.zscaler.com/blogs/security-research/moonwalk-deep-dive-updated-arsenal-apt41-part-2
https://www.zscaler.com/blogs/security-research/moonwalk-deep-dive-updated-arsenal-apt41-part-2
https://www.zscaler.com/blogs/security-research/new-phishing-trends-and-evasion-techniques
https://www.zscaler.com/blogs/security-research/new-phishing-trends-and-evasion-techniques

ThreatLabz Report: 87.2% of Threats Delivered Over Encrypted Channels

Read post

Get the latest Zscaler blog updates in your inbox

https://www.zscaler.com/blogs/security-research/threatlabz-report-threats-delivered-over-encrypted-channels
https://www.zscaler.com/blogs/security-research/threatlabz-report-threats-delivered-over-encrypted-channels

