
APT�C�26 �Lazarus) is a highly active advanced persistent group �APT)

known for its sophisticated and covert attack methods and techniques. The

group has a wide range of activities with goals ranging from cyber espionage

for gathering intelligence, custom ransomware attacks for financial gains and

causing cyber sabotage. The group is known for a wide range of highly

sophsiticated and well-known attacks that have caused massive damage and

got a notable recognition. These attacks reflect the huge amount of

resources and high technical capabilites the group posses.

In this research I wanna present a case study that I conducted on a new

division of the Lazarus group, which was discovered and documented by

Microsoft Threat Intelligence Center . The group is tracked as

Moonstone Sleet (formerly Strom-1789�. Moonstone Sleet is a slightly new

division of the massive Lazarus group, that is known for a few operations that

were conducted hand-by-hand with other North Korean threat actor affiliates

inculding .

It uses many tried-and-true techniques that were used by other North Korean

threat actors while using many of these techniques to conduct coordinated

attacks targeting a wide range of companies for financial and espionage

objectives, the group has shifted to its own infrastructure and attack methods

the most notable of which is using trojanized software that was distributed

through fake social media profiles, establishing itself a distinct and separate

division.

https://www.microsoft.com/en-us/security/blog/2024/05/28/moonstone-sleet-emerges-as-new-north-korean-threat-actor-with-new-bag-of-tricks/
https://www.microsoft.com/en-us/security/blog/2024/05/28/moonstone-sleet-emerges-as-new-north-korean-threat-actor-with-new-bag-of-tricks/
https://www.microsoft.com/en-us/security/blog/2024/05/28/moonstone-sleet-emerges-as-new-north-korean-threat-actor-with-new-bag-of-tricks/
https://www.microsoft.com/en-us/security/blog/2021/01/28/zinc-attacks-against-security-researchers/
https://www.microsoft.com/en-us/security/blog/2021/01/28/zinc-attacks-against-security-researchers/
https://www.microsoft.com/en-us/security/blog/2021/01/28/zinc-attacks-against-security-researchers/
https://blu3eye.gitbook.io/malware-insight/
https://blu3eye.gitbook.io/malware-insight/
https://blu3eye.gitbook.io/malware-insight/
https://blu3eye.gitbook.io/malware-insight/

We are gonna take a look at the whole infection chain of an attack that was

linked to The Moonstone Sleet group, which involved the usage of a

trojanized PuTTY installer and was first documented by .

The whole point is to show the consistent usage of trojanized software and

code reuse across different attacks linked to the MoonStone Sleet group.

Microsoft observed in early August 2023 that Moonstone Sleet was

delivering a trojanized version of PuTTY, an open-source terminal emulator

through a variety of platforms including Linkedin, and Telegram. The threat

actor will send the target a zip archive containing two files: a trojanized

PuTTY installer and a text file containing an IP address and password to use.

The trojanized version triggers the infection upon the user entering the

password provided, by simply checking the user's entered password against

a hardcoded password, thereby assuring that only the targeted individuals

who entered the intended password will be infected.

The heavy and consistent use of the relatively uncommon stream cipher

HC-256 for encryption and decryption has been observed. In our case, the

next stage payload is decrypted using a hardcoded 32-byte HC�256 key.

After decryption, the data is decompressed before being mapped to memory.

After successfully decrypting and decompressing the next stage DLL, it

employs a traditional yet effective DLL loading mechanism. Rather than

allocating committed and RWX (read-write-execute) memory directly which

may raise some red flags, the mapping process consists of four steps:

1. Allocate memory with size equal to the image, reserved, and set to
PAGE_READWRITE. This can be done either at the original PE �Portable
Executable) image base or the system's preferred address.

2. Commit the previously allocated memory, then copy the headers and
sections of the payload into it.

3. Perform relocation fixups for any hardcoded addresses, populate the
Import Address Table �IAT�, and apply the appropriate section
permissions.

4. Call the DLL's entry point, passing a unique wide string that will be used
and carried through the subsequent stages.

The in-memory mapped DLL functions as an installer module that writes the

next stage module, referred to as SplitLoader , to disk. The name likely

comes from the fact that the loader is divided into two components. The first

component is decrypted using HC-256 , then decompressed, and

subsequently written to %APPDATA%\..

\Local\Microsoft\Windows\usrgroup.dat .

The second part of the loader is saved to %APPDATA%\..

\Local\Microsoft\Windows\Explorer\thumbcache_512.db .

Before executing the first part , which will decrypt, decompress, and execute

the next part of the loader(), it will set up persistence by

first creating a scheduled task using COM ITaskScheduler , and then it

creates an entry USBCheck under

HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\Run .

The execution of the first part DLL�) was setup in a very special

and dependent way such that the next part is only

parsed and decrypted properly if the usrgroup.dat's export was executed

with the proper arguments L"%APPDATA%\\..\\Local\\Microsoft\\Windows\

\usrgroup.dat, LoadDllW %APPDATA%\\..\\Local\\Microsoft\\Windows\

\Explorer\\thumbcache_512.db \"zjWy\" 4701" . This is what we can call a

DLL checksum to enforce the execution of the DLL only when the intended

arguments are passed and prevent it from running in an automated analysis

environment or a sandbox.

This is a common theme or technique that was observed being heavily used

in later attacks linked to the Moonstone sleet.

The provided argument serves the path of the next part of the loader, the

first 4 bytes of the XOR decryption key that will be used to decrypt the next

stage embedded inside , and lastly the same magic wide

string which will prove useful in the next stage.

The process begins by attempting to obtain a file handle for

thumbcache_512.db and then parsing the file to extract the necessary

information for the next stage.

First, it reads the size of the encrypted and compressed next stage, which is

represented by the second set of four bytes from the beginning of the file

(the initial four bytes are not relevant). Next, it reads a four-byte magic value

to verify the integrity of thumbcache_512.db .

After acquiring the size of the embedded payload and performing a sanity

check on the magic value, the process continues by reading the payload

along with an additional 28 bytes �0x1C) that follow the payload. From this,

only the first four bytes are utilized. These four bytes are combined with the

previously mentioned four-byte value "zJWy" to create an 8-byte XOR key,

which will be used to decrypt the payload.

Finally, the payload is decrypted using the 8-byte key assembled as

described. It is then decompressed using zlib and mapped into memory in

the same way previously explained to enhance its chances of not being

detected.

After calling DLLMain, which is the DLL entry point function, the execution of

the DLL is properly initialized. It then enumerates the exported functions'

names table, searching for the exported function named

"GetWindowSizedW" to finally call.

This Python script can parse , extracting, decrypting,

and decompressing the next stage.

import sys
import zlib

def decrypt_payload(enc_payload: bytes, full_xor_key: bytes) -> bytes:
 """XOR decrypts the payload using the extracted key."""
 dec_payload = bytearray(enc_payload)
 xor_key = full_xor_key[:8]
 print(f"used key: {xor_key.hex()}")
 print(f"used key length: {len(xor_key)}")
 key_len = len(xor_key)
 for i in range(len(enc_payload)):
 dec_payload[i] ^= xor_key[i % key_len] # Cycle through the key
 return bytes(dec_payload)

def main():
 if len(sys.argv) < 2:
 print(f"Usage: {sys.argv[0]} <path_to_encrypted_next_stage>")
 sys.exit(1)

 file_path = sys.argv[1]
 first_dword = b"zjWy" # Ensure this is 4 bytes
 full_xor_key = [first_dword] # Start with the known first DWORD
 decompressed_payload_data_bytes = bytes()
 with open(file_path, "rb") as f:
 # Read payload size (seek to offset 4 and read exactly 4 bytes)
 f.seek(4)
 size_bytes = f.read(4)
 size_int = int.from_bytes(size_bytes, "little")
 print(f"Payload size: {hex(size_int)}")

 f.seek(4, 1) # Skip 4-byte magic

 # Read the encrypted payload
 payload_data = f.read(size_int)
 print(f"We are at offset: {hex(f.tell())}")

 # Read remaining 7 DWORDs (4 bytes each)
 for _ in range(7):
 dword = f.read(4)
 if len(dword) < 4:
 print("Warning: Unexpected EOF while reading XOR key!")
 break
 full_xor_key.append(dword)

 xor_key = b"".join(full_xor_key)
 print(f"Extracted XOR Key: {xor_key.hex()}")

 # Decrypt the payload
 decrypted_payload_data_bytes = decrypt_payload(payload_data, xor_key)
 decrypted_payload_data_bytes = decrypted_payload_data_bytes[:len(decrypted_pa
 decompressed_payload_data_bytes = zlib.decompress(decrypted_payload_data_byte
 print("Decrypted (first 20 bytes):", decompressed_payload_data_bytes[:20])

 # Save decrypted payload
 with open("payload.dec", "wb") as out:
 out.write(decompressed_payload_data_bytes)

 print("Decrypted payload saved as: payload.dec")

if __name__ == "__main__":
 main()

This stage is the one before the last, where communication with the

command and control �C2) server occurs. It begins by generating a 16-byte

unique identifier, which will be used to authenticate with the C2 server. Once

the C2 confirms the authenticity of the client, the final payload can be

retrieved.

The unique identifier is constructed by converting the DLL checksum to

ASCII, appending "64," and adding ten random characters.

It's important to note that Moonstone sleet obscures the final payload, which

rarely changes. This is done using a multi-stage loader setup, where each

stage triggers the next. To ensure proper execution, a DLL checksum is

implemented, preventing it from running in automated analysis environments.

In our case, the DLL checksum is utilized to create the Bot ID, which confirms

the authenticity of the client and ensures that the payload is only accessed

by an authentic client.

The 16-byte identifier and the current system time and date is base64

encoded and added as part of a very large string of bytes, that will be sent to

the Comamnd and Control(C2) server to autheticate

Unfortunately, at the time of this writing, the C2 server is no longer

operational, so we're unable to demonstrate how the HTTP POST is

formatted. However, I found an excellent report that I will link in the

references, which illustrates the network traffic and the structure of the

request.

After confirming a successful connection by checking the returned status

code, the system proceeds to read the available data from the C2 server. The

data received is decoded using a non-standard scheme before processing it.

https://lazarus.day/media/post/files/2023/11/13/2023-11-10_%E1%84%89%E1%85%A1%E1%86%BC%E1%84%89%E1%85%A6_%E1%84%87%E1%85%AE%E1%86%AB%E1%84%89%E1%85%A5%E1%86%A8_%E1%84%87%E1%85%A9%E1%84%80%E1%85%A9%E1%84%89%E1%85%A5%E1%84%8B%E1%85%A1%E1%86%A8%E1%84%89%E1%85%A5%E1%86%BC%E1%84%8F%E1%85%A9%E1%84%83%E1%85%B3%E1%84%85%E1%85%A9_%E1%84%83%E1%85%AE%E1%86%AB%E1%84%80%E1%85%A1%E1%86%B8%E1%84%92%E1%85%A1%E1%86%AB_Putty.pdf
https://lazarus.day/media/post/files/2023/11/13/2023-11-10_%E1%84%89%E1%85%A1%E1%86%BC%E1%84%89%E1%85%A6_%E1%84%87%E1%85%AE%E1%86%AB%E1%84%89%E1%85%A5%E1%86%A8_%E1%84%87%E1%85%A9%E1%84%80%E1%85%A9%E1%84%89%E1%85%A5%E1%84%8B%E1%85%A1%E1%86%A8%E1%84%89%E1%85%A5%E1%86%BC%E1%84%8F%E1%85%A9%E1%84%83%E1%85%B3%E1%84%85%E1%85%A9_%E1%84%83%E1%85%AE%E1%86%AB%E1%84%80%E1%85%A1%E1%86%B8%E1%84%92%E1%85%A1%E1%86%AB_Putty.pdf

The decoded data is divided into five parts, separated by the "|" symbol. The

data in these five parts respectively represent: the maximum size �KB) of the

subsequent DLL execution result transmitted to C2 each time, the length of

the encrypted payload that will be received next, the DLL export function

name , the DLL checksum similar to the above, and the MD5 hash value of

the payload.

Next, the payload is received from the C2 server and is MD5 hashed to verify

the integrity of the received payload before proceeding with decryption and

execution.

After verifying its integrity, the payload DLL is decrypted again using a

hardcoded HC�256 32-byte key, decompressed, and then reflectively loaded

into memory.

After successful mapping to memory, the DLL entry point is called for proper

DLL initialization, and then the targeted export function is called.

In a recent research published by the 360 Threat Research Institute, we

observed the consistent use of both legitimate and trojanized software. In our

case study, we focused on a trojanized version of PuTTY, while the other

research analyzed the infection chain of another trojanized legitimate

software called IPMsg.

This comparison reveals that both attacks share significant similarities at the

code level, and they employ the same tactics, techniques, and procedures

�TTPs� as well as a multi-stage setup to obscure the final payload. Therefore,

it is clear that both attacks were initiated by the same Lazarus group.

• blockchain-newtech[.]com �C2 server)

• f59035192098e44b86c4648a0de4078edbe80352260276f4755d15d354f
5fc58 �PuTTY installer)

• fcb687685f71615c83e9af26087e6036d7dd52a91339ef5c58d3150fd402a
586 �SplitLoader installer | Dropper)

• 00433ebf3b21c1c055d4ab8a599d3e84f03b328496236b54e56042cef21
46b1c �SplitLoader first part usrgroup.dat)

• d65e05c961107c787310c4f369034b096f9484c328b43140d0eb90820c8
33f9f �SplitLoader second part thumbcache_512.db)

• 63fb47c3b4693409ebadf8a5179141af5cf45a46d1e98e5f763ca0d7d64fb
17c �Trojan downloader)

• https://mp.weixin.qq.com/s?
__biz=MzUyMjk4NzExMA��&mid=2247505438&idx=1&sn=cf1947c7af65
81f4a66460ae6d14dc2f

• https://lazarus.day/media/post/
files/2023/11/13/2023�11�10_%E1%84%89%E1%85%A1%E1%86%BC%E1
%84%89%E1%85%A6_%E1%84%87%E1%85%AE%E1%86%AB%E1%8
4%89%E1%85%A5%E1%86%A8_%E1%84%87%E1%85%A9%E1%84%
80%E1%85%A9%E1%84%89%E1%85%A5%E1%84%8B%E1%85%A1%
E1%86%A8%E1%84%89%E1%85%A5%E1%86%BC%E1%84%8F%E1%
85%A9%E1%84%83%E1%85%B3%E1%84%85%E1%85%A9_%E1%84
%83%E1%85%AE%E1%86%AB%E1%84%80%E1%85%A1%E1%86%B8
%E1%84%92%E1%85%A1%E1%86%AB_Putty.pdf

• https://www.microsoft.com/en-us/security/blog/2024/05/28/moonstone-
sleet-emerges-as-new-north-korean-threat-actor-with-new-bag-of-
tricks/

Previous

ESET themed wiper Targets Israel

Last updated 27 days ago

https://blu3eye.gitbook.io/malware-insight/eset-wiper
https://blu3eye.gitbook.io/malware-insight/eset-wiper
https://blu3eye.gitbook.io/malware-insight/eset-wiper
https://blu3eye.gitbook.io/malware-insight/eset-wiper
https://blu3eye.gitbook.io/malware-insight/eset-wiper
https://blu3eye.gitbook.io/malware-insight/eset-wiper

