Babble Babble Babble Babble Babble Babble
BabbleLoader

Intezer

Loaders, an Ever Evolving Market

The pace of innovation and development in the malware detection market is relentless, the same
goes for the development of malware itself. Constantly charging and adapting to create ever more

evasive and capable payloads.

One such sector of this market is the loader (also called crypter or packer) market. In today’s threat
landscape, loaders have become a critical tool in cybercrime operations, serving as the backbone
for delivering a range of malicious payloads. Loaders are often the first stage in an attack chain,
designed to stealthily execute or inject malware, such as info-stealers or ransomware, into a target
system. Their prevalence reflects an evolution in tactics, allowing threat actors to evade traditional
antivirus defenses through techniques like in-memory execution and anti-analysis features. Widely
available for purchase or lease on underground markets, loaders are now a commodity in malware
distribution, making sophisticated attack methods accessible to a broader range of actors and

adaptable across diverse campaigns and targets.

In this blog, we will introduce “BabbleLoader”, an extremely evasive loader, packed with defensive
mechanisms, that is designed to bypass antivirus and sandbox environments to deliver stealers

into memory.
BabbleLoader’s Techniques to Evade Traditional and AI Systems

BabbleLoader stands out for its array of sophisticated evasion techniques that challenge both
traditional and AI-based detection systems. Key features include junk code insertion and
metamorphic transformations, which alter the loader’s structure and flow, effectively evading
signature-based, Artificial Intelligence, and behavioral detections. Through dynamic API
resolution, the loader sidesteps common API monitoring by resolving necessary functions only at
runtime, preventing static analysis from identifying telltale Windows APIs. Also bypassing
sandbox injected DLLs that hook API calls. Shellcode loading and decryption further obfuscate the
payload by embedding and decrypting malicious code in memory, bypassing file-based scanning.
Additionally, anti-sandboxing and anti-analysis measures detect virtual environments, impeding
sandbox analysis and automated AI defenses. Together, these techniques make this loader a

versatile tool, capable of subverting both static and dynamic security layers.

When investigating this loader, we have seen it used across multiple campaigns, targeting both

English and Russian speaking individuals. Lure themes suggest it is targeting a vast range of users,
from users looking to download generic cracked software, such as video editing, gaming, VPN,
browsers, and utilities. We have also noticed campaigns that target with a particular focus on
business professionals in finance and administration, masquerading as accounting software, and

forms for filling out eligibility checks often used by HR or payroll professionals.

Technical Analysis

The sample used in this analysis is:
ao08db4c7b7bacc2bacdiegaoac7fbbg1306bf83c279582f5ac3570a90e8bof87

Junk Code/Metamorphism

BabbleLoader makes diabolical use of junk code. This is done in an effort to hamper analysis by
confusing the analyst. This is achieved through multiple means. There are many paths of code that
are never actually accessed, but use random imports with randomly generated hardcoded strings.

v

Jump to xref
loc_14000ECOB: ; cchCount2
[rsp+ +dw agsl,
rax, String2
[rsp+ +1pNumberOfAttrsRead]l, rax ; lpString2

[rsp+
[rsp+

; dwCopyFlags

rod, ; cchCountl
r8, Stringl

edx, ; dwCmpFlags
ecx, ; Locale
cs:CompareStringA

[rsp+ +var_1BF48], eax

d], rax ; pbCancel
1pData

1pProgressRoutine

Junk Code making rubbish calls

The loader also makes excessive use of random instructions, adding values to local variables and

moving data around registers for no particular functionality.

eax, [rsp+ +Time.wDayOfWeek]
ecx, [rsp+ +Time.wYear]

eax, ecx

rcx, [rsp+ +var_15B48]

[rcx], ax

eax, byte ptr [rsp+ +FileSize]
ecx, byte ptr [rsp+ +FileSize+1]
eax, ecx

byte ptr [rsp+ +Attribute+1], al
rax, [rsp+ +var_15B20]

ecx, dword ptr [rsp+ +ClipRectangle.Right]
eax, [rax]

eax, ecx

[rsp+ +NumberOfAttrsRead], eax
rax, [rsp+ +var_15B20]

ecx, [rsp+ +NumberOfAttrsRead]
eax, [rax]

eax, ecx

rax, [rsp+ +var_15BE8]

rcx, qword ptr [rsp+ +Date.wYear]
ecx, [rcx]

eax, [rax]

eax, ecx

[rsp+ +pBuf], eax

rax, gqword ptr [rsp+ +Date.wYear]

ecx, [rsp+ +pBuf]

eax, [rax]

eax, ecx

rcx, qword ptr [rsp+ +var_15AE8]
[rcx], eax

rax, [rsp+ +var_15BE8]

eax, [rax]

ecx, al

Junk Code

The amount of junk code added into the sample greatly increases the amount of code to the point
where it starts to crash disassembly or decompilation tools through its sheer mass alone. In the

case of IDA needs to collapse nodes due to them being so large.

Sorry, this node is too big to display

Collapsed Node in IDA

In Ghidra the function graph view will freeze and there are too many instructions for the

decompiler to show.

4 Decompile: FUN_1400084b0 - (a08db4c7b7bacc2bacdle9alac7... ¥4 . ko = [@1 v X

1
—_— 2 |Low—level Error: Flow exceeded maximum allowable instructions

Kad

Decompilation output in Ghidra

We have even checked in Binary Ninja to see the effects of the junk code. The user is required to

manually force analysis of the function due to the size.

Loading. ..

14017410a
Binary Ninja showing large function

Each of these techniques also serve the purpose of making the loader metamorphic. Each build of
the loader will have unique strings, unique metadata, unique code, unique hashes, unique
encryption, and a unique control flow. Each sample is structurally unique with only a few snippets
of shared code. Below is a very small snippet of the main method of two different samples, showing

very different control flow.

XpOrts =

Comparison of structure of two BabbleLoader samples

Even the metadata of the file is randomized for each sample.

» .

Property Value
Comments Ferry forbidden aniline tangle discoloured milkman
CompanyName QOutsourcing
FileDescription Tormented cudgel sheer households drownings Festivals
FileVersion 4,29.221.0
Internaltame Uprated disclaimer
LegalCopyright Copyright © Saddle misunderstands respectable
LegalTrademarks Babbling landmarks loveless metronomic

Junk Metadata

What This Means for AI-Based Analysis Techniques

These techniques also have large implications for Al based analysis techniques. This constant
variation in code structure forces AI models to continuously re-learn what to look for—a process
that often leads to missed detections or false positives. By filling the code with junk instructions,
the loader can trick Al into interpreting irrelevant actions as meaningful ones, leading it to predict
that the malware will perform operations that it never actually executes. Junk code also generates
a large volume of “noise” in the program flow, overwhelming the AI’s pattern-recognition
capabilities and forcing it to sift through thousands of extraneous actions that mask the true
behavior of the malware.

Additionally, the inclusion of countless junk variables adds another layer of complexity. Al models
analyzing variable behavior to understand data flow must now track thousands of decoy variables,
each potentially obfuscated or dynamically transformed to further confuse the analysis. This
variable noise, combined with the ever-shifting structure from metamorphism, makes it extremely
difficult for Al to reliably determine which variables are integral to the malware’s function and
which are simply junk.

The sheer volume of junk code and variables also makes analyzing this loader exceptionally costly.
The sheer number of tokens AI must process to parse and interpret the junk alone leads to high
computational and financial costs, effectively weaponizing the malware’s complexity against AI-
driven defenses. This combination of overwhelming data volume, misleading patterns, and high
processing requirements creates significant challenges in detecting and analyzing the malware

accurately.
Dynamic API Resolution

One of the first operations of the loader is to start the process of dynamically resolving API calls. It
will achieve this through API hashing. It will first get a module handle for ntd11.d11. The string
for the DLL is decrypted using a rolling XOR cipher.

001400017B0 48:894C24 08 mov gword ptr ss:i[rsp+s],rox

o

e || 00000001400017B5 43:83EC 68 sub rsp,6s

o 1001400017E9 C64424 50 23 mov byte ptr ss: 23: g’
o C64424 51 9B mov byte ptr ss:[r

B C64424 52 CB mov byte ptr ss:

° 1400017CS C64424 53 DD mov byte ptr ss:i[rsp

o 1001400017CD C64424 54 AB mov byte ptr ss:[rsp+54],AB

e || 00000 100140001702 C64424 55 8D mov byte ptr ss:[rsp+55],80

https://www.ired.team/offensive-security/defense-evasion/windows-api-hashing-in-malware
https://www.ired.team/offensive-security/defense-evasion/windows-api-hashing-in-malware

® || 0000000140001707 C64424 56 4B mov byte ptr ss:[rsp+56],4E 4B: 'K’
e[| 00 0140 (C64424 57 5D mov byte ptr ss:[rsp+57],50 sp:']’
o C64424 58 2B mov byte ptr ss:[rsp+58],2E 2B: '+'
° C64424 539 86 mov byte ptr ss:[rsp+53],56
° C74424 24 9A875B37 |mov dword ptr ss:[rsp+24],275B8794
o C74424 20 00000000 mov dword ptr ss:[rsp+20],0
o 48:804424 50 lea rax,qword ptr ss:[rsp+50]
° 48:894424 38 mov gword ptr ss:[rsp+38],rax [rsp+38]:"ntdl11.d11"
o 458:634424 20 movsxd rax,dword ptr ss:[rsp+z20]
° 453:83F8 DA cmp rax,A Ar'\n'
° v 73 3B jae loader.l14000184B
o 458:634424 20 movsxd rax,dword ptr ss:[rsp+20]
° 45:3B4C24 38 mov rcx,qword ptr ss:[rsp+3g] [rsp+38]:"ntdl11.d11"
° 0FB&0401 movzx eax,byte ptr ds:[rox+rax]
° 334424 24 xor eax,dword ptr ss:[rsp+z4]
° 0FB64C24 24 movzx ecx,byte ptr ss:[rsp+z4]
° D2Cs ror al,cl
° 48:634C24 20 movsxd rcx,dword ptr ss:[rsp+z20]
° 45:8B5424 38 mov rdx,qword ptr ss:[rsp+3g] [rsp+38]:"ntdl11.d11"
° 880404 mov byte ptr ds:[rdx+rcx],al
° 6B4424 24 4F imul eax,dword ptr ss:[rsp+z24],4F
° 594424 24 mov dword ptr ss:[rsp+z24],eax
o 8B4424 20 mov eax,dword ptr ss:[rsp+20]
o FFCO inc eax
o 894424 20 mov dword ptr ss:[rsp+20],eax
o ~ EB BA jmp loader.140001805
ad 48:804C24 50 lea rcx,qword ptr ss:[rsp+50]
—>e FF15 7ASB1800 call gword ptr ds:[<&GetModuleHandleax]
° 48:894424 28 mov gqword ptr ss:[rsp+28],rax
o 48:837C24 28 00 cmp gword ptr ss:[rsp+28],0
o alaly v 7TE N7 ine Tnader 14NNN1Saa

Decoding of NTDLL string

Using the returned handle, the loader will start to read the PE header of ntdll.dll and it will locate
the export directory and start parsing out values that it will need to dynamically resolve the
functions by hash. The loader builds up the following struct.

struct _NtDllExportInfo {
DWORD* AddressOfFunctions;
DWORD* AddressOfNames;
DWORD* AddressOfNameOrdinals;
DWORD NumberOfNames;
HMODULE NtdllModuleHandle;

}

The parsed values can be seen easily from viewing the export directory in CFF explorer.

CFF Explorer ¥III - [ntdil.dil]

File Settings ?

Member Offset Yalue
= gle: ntdil.dll TimeDateStamp 00113454 SBETEFEA
— =l Doz Header
Majorversion 00113458 Qooo
[Z] Nt Headers !
(2 File Header Minariersion 00113454 Qooo
[Z] Optional Header Marne 0011345C o011gEz2
= Data Directories [+] Base 00113460 00000001
||_ .. SEC“':'” Headers [+] MumberOfFunctions 00113464 000007C9
55 Export Directory
L) Resource Dir ectory MurmberOfMames 00113468 0000071
— [C5) Exception Directary AddressOfFunctions 0011346C 00114078
— | Relocation Directory AddressOffames 00113470 00115F9C
— D Debug Directory AddressOfiameOrdinals 00113474 00117EA0
— 'ﬁ;.ﬁddress Converter
— &, Dependency Walker
ol
— 'ﬁr Hex Editor Ordinal Function R¥a | Mame Ordinal | Mame RYA Mame
— 4, Identifier
— "ﬁg.lmpoll Adder - 4 " " -
_ 'ﬁ; Quick Disassembler {nFunctions) | Dwor YWor Dok s2Ansi
— 4, Rebuilder 00000001 D00EG620 MfA TS TS
— 'ﬁ, Resource Editor 0000000z O00EG4AD TS IS MJA

00000003 o0oDoo40 TES MiA M

00000004 OOODGAED MjA Mis (773
OO0DDOOS OODAFESD MjA MiA 7
OO0DDOOG OOOEAB4D MjA 7 7
O00DDOOF OOOE7610 MjA Mis 723
O000DOOS 000ODADO MjA Mis 72
00000009 OO06FS0 0008 00118E2C &_SHAFinal

Parsed fields shown in CFF Explorer

Once the struct has been built up, it can then proceed to iterate through the export names, hashing
the names to compare to hardcoded values in the binary.

Resolution of functions by hash

The following calls are resolved, getting pointers for imports. Whilst the exports will remain the
same for each build of the malware, the hashing will be unique per each build.

Hash Call
1ABEC790 | NtCreateSection

993C0058 | NtMapViewOfSection

92263458 NtUnmapViewOfSection
9DA1D253 | NtClose

6AF3F390 | NTQuerySystemInformation
0A96ABOE4 | RtlAllocateHeap
8A21A480 | RtlFreeHeap

Shellcode Loading and Payload Decryption

Once the loader resolves pointers for the imports, it first calls NtCreateSection, followed by

NtMapViewOfSection. This approach allows the malware to allocate and manage memory outside

the standard process space. The decryption process begins with the loader rearranging the

randomly stored encrypted chunks of the payload into their correct order within the mapped

memory, before proceeding to decrypt each block.

Address Hex ASCIT
OO000000001LEQOOO | O OO OO Qo000 00 00 QO0(00 00 00 Oo0(00 00 00 OO0 6 e e e eesesesessess
0000000000LEQDLD | 00 OO0 00 00|00 00 OO0 00(00 00 00 00|00 OO0 00 00| @ v e e e e eeeeenenes
00000Q00000LEQOZO |00 OO0 OO0 Q0|00 Q0 OO0 o000 OO0 00 OO0 (00 00 00 00| @ eessssssssssss
00000000001EQQ30 |00 00 00 00|00 00 00 O0(00 00 00 00|00 00 00 00| @ e e e e eeeeeenenss
00000Q00000LEQO4D (00 OO0 OO0 Q0|00 00 OO0 o000 00 00 OO0 (00 00 00 00| @ e e esessssssssss
00000000001EQQS] | 00 00 00 00|00 00 00 d0(00 00 00 00|00 00 00 00| @ v e e eeeeeeenenss
00000000001EQ0E0 |00 00 00 00(00 00 00 00|00 00 00 00|00 OQ 00 00| . .ueeeeeennnnnns
0o00QO0O00001lEQQFO | Q0 OO0 Qo Qo|o” - _" TTlao o0 OO0 OO0 & e eeeunsnnsnesns
Q0000000001EQOSO | 00 00 00 00 00 O 00 00| @ ueeenensnnnnnns
00000000001LEQOSO | 00 00 00 oo Mapped VleW 00 O OO0 00| @ ueeeesnsnnnnnns
00000000001EQOAD | OO0 OO 00 00 un 00 00 00|00 00 00 00|00 Of 00 00| @ u e e eeennnnnns
0000000000LEQOBD | 00 OO0 00 00|00 00 00 00(00 00 00 00|00 Of 00 00| @ v e e e eeeeeenenes
00000000001EQQCD | 00 00 00 00|00 00 00 d0(00 30 00 00|00 Of 00 00| @ e e e e eeeeeenenss
0000QQ0000LEQODO (00 OO0 OO0 Q0|00 Q0 00 o000 00 00 OO0 (00 O 00 D0 @ e eesssssssssss
00000000001EQOED | 00 00 00 00|00 00 00 00(00 a0 00 00|00 Of 00 00| @ v e e eeeeeenenss
00000000001EQOFD| 00 00 00 00|00 00 OO0 00(00 00 00 00|00 O 00 00| v e e eeeeeneenenes
00000Q000001EQLIOO | Q0 OO Q0 Q0|00 Q0 OO0 Qo000 a0 Qo0 aofoo 0 OO0 OO0 & e eeennnnnsnesns
00000000001EQLLO| 00 OO Q0 00|00 00 00 O0[00 300 00 00|00 Of 00 00| @ v e e e eeeeeenenes
Address Hex ASCIT
00000000001EQDQD | EF Bl <3 9C|1C 20 10 OF |30 88 9F AF|CD 13 OF 02 |Cif....®=.. L...
0000000D001EQDLD |73 AL C4 25|53 34 9A DB|DE AD CC 11|47 Af 6C CEB|s5jAlS4.0p.1.G-0E
00000000001EOD20 |01 F4 25 9E|EC 36 04 DC|AS C5 A4 59|1A cf C2 B2 |.0%.16.UsAay. oA=
00000000001EQD30 | C7 B7 DE BE|40 D5 92 AS|EBF 45 30 EB|05 C4 2A &0|G-p&ad. -I0&.E*"
00000000001EQO4D | OF S0 &1 93|74 37 10 46 |A1 &F 01 032 |49 59 F4 84 |.]a.t7.Fio..Ivd.
00000000001EQOSD |01 FO B9 EB4|D0 <D F3 &5 DF Qs E? 53 o5 ch 5a F1|f@e BIDH .C5.EZA
Q0000000001EQO&SD | 3F 80 85 04 |&C 03 22 B& 45 GE 24 CF BE| 7. ”ﬂyE kch
00000000001EQOFO | &7 AF DE 38E t d d B 2§ &4 DC|Q EB\I B . g
Q0000000001EQQSD | EF Bl &5 1C (: 3 BY B2 Bz |Ct WK yat"
00000000001EQOSD | CF 1F 3B &C r](:rle) €3 C) EB? A AF FA|C.3N. g 4B WbG-. 7
00000000001EQQAD | CD 55 &1 93|08 ES 0A Be 7l aF o) CE Bz | Iua..é. ﬂyq LIx
00000000001EQOED | CF A0 53 49 (9C &8 C2 91 95 g9 14 n3 47 A§ FD 4B|¢ SI.TA.. daﬁyK
00000000001EQQCO | E7 81 45 21(8E 93 EC 85 |6E C5 23 15|01 2§ F4 04| C.E!n. 1 nﬁ# .o
00000000001EQODD | CB 29 4C E2 |C1 1F A3 BF |86 01 04 C5 (0D 2§ 5A FL|EILAA .E.+ZA
00000000001EQOED | F4 Bl E4 04|55 95 CA 99|90 Al 54 FF &0 4§ CA E6|Oxd.e. E .3 FE=
00000000001EQOFD |57 24 BD C4|D5 00 SA 99 (BB 10 0OE ED|7D BY &A F3 | wWikad. .11 jo
00000000001EDLOD | AB 00 56 44|93 F1 1B A2 |[F2 BO 23 2B|54 BY A2 79| «.vD.H. ¢Dh#+Ti¢y
00000000001EQLLO 74 CB 25 +tEC[-0."'.. |azd.
Address ASCIT
00000000001EQOOD | 45 SB C4 45|89 55 18 45|89 68 20 56|57 48 54 41| H.AH.¥.H.h wwWaTa
00000000001EOQLD |56 41 57 45|83 EC 20 32 |DB 45 SB Fl|4% 8B 09 44 |vawH.i 30H.AH..D
00000000001EQOZ0| 8B F3 89 G5 |08 SB EB 89|55 10 4% SB|(B% 5% 01 00| .0.¥..8.3.H. "*.
00000000001EQND30| 00 4C 8B AL|70 01 00 00|48 81 C1 CO|00 O 00 ES|.L.ip...H.AR. . LB
00000000001EDO40 | 4C 01 00 0OO0|4C 8D 42 24|50 45 33 Co|32 D) 8D 4B|L...L L$PE3A3G K
00000000001EOQSO | 05 ES 41 01|00 00 85 0|74 OF 30 04|00 O CO 75 .éA... At.=...AU
00000000001EOOG0 |53 65 48 8B|0C 25 60 00|00 00 32 D2 |44 S 44 24|SeH. .% ...300. D%
00000000001EDD?O |50 48 8B 49'°~ £ n7 aclen rFe 4e erleg 78 01 CC|PH. InyH aH. AU, T
0000000000LEDOSO | 458 8B 0E 4CI N e somd o] M AAAD FE 00| H..L.%H.AA. .. &p.

00000000001 EQOS0
00000000001LEQOAD
00000000001EQOBD
00000000001EQOCO
oo000000001EQODD
00000000001 EQOED
00000000001EQOFD
00000000001 EQLIOD
00000000001 EQLLO

Decryption stages

s LJCTUI y IJLCU UUC s

ED CEE LU

oo
EA

(NN

(NN}

(=1}

“u

L

wl

B2
oo

.. D.0$PL.LEXH. X"

eee BT.. . ATA=. .
LATZIZAE. ., L H.DE
H.Et.D.0E.D.BH.I
.. TAAJI0. B.-..AU

é...0H.8H.D2E. .0
H.I..faAl. B.-..
AUE.E.D;0.DA. &9,
U2EeH. . % ...M.C30

Before calling the decrypted code, the loader will perform one of a number of anti sandboxing

checks.

AntiSandboxing/Analysis

DirectX DLL

One of the anti-sandboxing checks involves checking the installed graphics adapters to see if it is

running in a sandboxed environment or not. This is achieved by importing the DLL dxgi.d11.

The DLL is the DirectX Graphics Infrastructure library and is a core Windows DLL that provides

functionality for interfacing with graphics hardware.

The exported function CreateDXGIFactory is called giving the loader a IDXGIFactory object. This

allows the loader to enumerate information from the installed graphics adapters by calling
EnumAdapters, followed by GetDesc from the IDXGIAdapter object to give a DXGI_ADAPTER_DESC

struct.

typedef struct DXGI_ADAPTER_DESC

{

WCHAR Description[128];
UINT VendorlId;
UINT Deviceld;
UINT SubSysId;
UINT Revision;
SIZE_T DedicatedVideoMemory;

SIZE_T DedicatedSystemMemory;
SIZE_T SharedSystemMemory;
LUID AdapterlLuid;
} DXGI_ADAPTER_DESC;

From these structs is parsed the VendorId, and it is compared against three values that form a

vendor whitelist.

1D
8086
10DE

Vendor

Intel
Nvidia

https://learn.microsoft.com/en-us/windows/win32/api/dxgi/nn-dxgi-idxgifactory
https://learn.microsoft.com/en-us/windows/win32/api/dxgi/nn-dxgi-idxgifactory

‘ 1002 ‘ AMD ‘

This anti-sandboxing technique has been observed in previous malwares, namely Furtim in 2016

and Invalid Printer Loader in 2023. BabbleLoader takes additional measures to hide the vendor ID

numbers through using a simple XOR key and a few assembly instructions. The instructions are
separated by a large amount of junk code so as to hide the values when statically analyzing the

sample in a disassembler.

mov [rsp+1FF48h+nvidiald], ©E8185136h
//3Junk

mmov eax, [rsp+1FF48h+nvidiald]

xor eax, OE81841ES8h

mov [rsp+1FF48h+nvidiald], eax

//3Junk

mov eax, [rsp+1FF48h+nvidiald]

cmp [rsp+1FF48h+vendorId], eax

The decoded value (Nvidia Vendor ID) is shown below:

l. Input: hexadecimal (base 16) v

e8185136
Vz
[l. Input: hexadecimal (base 16) v
e81841e8
Vz
Calculate XOR

[ll. Output: hexadecimal (base 16) v

10de

XOR to derive VendorID

VDLL Function

https://www.sentinelone.com/blog/sfg-furtims-parent/
https://www.sentinelone.com/blog/sfg-furtims-parent/
https://blog.morphisec.com/in2al5d-p3in4er
https://blog.morphisec.com/in2al5d-p3in4er

Another form of anti-sandboxing comes in the form of a VDLL check to combat Windows
Defender’s Antivirus Emulator. To start this check, BabbleLoader, in a similar manner to how it

deobfuscates strings to dynamically resolve functions, will decode two DLLs with exports.

The first check is to get kernel32.d11 and look for the proc address for
MpSwitchToNextThread_WithCheck. The second check is ntd11l.d11 with the export of
MpDispatchException.

~ EB Br\
48:804C24 4Il

Jmp Toader. 140001008
~ox,qword ptr ss:irsp+40]
i d prr j [<&Germadu1EHand1Eﬁ}]
Al s:lrsp+csj

l

rcx:kernel3sz.din"
.[{

rocaddress:]
[ok

[Fsp+28] i "MpSwi tchToNextThread_withCheck"

E
p
,:
4
E

d rax dm ;d ptr ss: etz

X 4 A Ar'hnt
jae 1uader.14ﬂnuinCF

Call of emulated functlon

If any of the GetProcAddress calls are successful, it will set a variable for the loader to exit later. A
successful import of any of these calls will indicate that the loader is being emulated by Windows
Defender. This is because these exports only exist in VDLLs, which are modified Windows system
DLLs available only in the emulator for Defender. This technique has been used by Raspberry
Robin previously, and suggests that the loader developer is able to incorporate new technical

research around antivirus and sandboxing internals.
Unique process count

When the shellcode payload that is stored in the mapped memory of the newly created section is
executed, it performs another anti sandboxing check, this time based on the running processes in
the machine.

This is achieved first by calling NtQuerySystemInformation, previously dynamically resolved
from ntd11l.d11. Getting the SystemProcessInformation class. This returns an array of

SYSTEM_PROCESS_INFORMATION structures, one for each process running in the system.

The process name for each process in the array is gathered and hashed as a checksum, and
compared with the hash of the name of the process next in the array. A counter is incremented
with each iteration, but if the checksums match, the counter is reduced by one. Giving the number

of processes with unique names running.

loc_4010BC:

mov rcx, [rdi+4oh]
test rcx, rcx
jz short loc_4010E1

® 3 =

mov

: ‘
rldd, ebx

https://web.archive.org/web/20240727145128/https://harfanglab.io/en/insidethelab/raspberry-robin-and-its-new-anti-emulation-trick/
https://web.archive.org/web/20240727145128/https://harfanglab.io/en/insidethelab/raspberry-robin-and-its-new-anti-emulation-trick/
https://web.archive.org/web/20240727145128/https://harfanglab.io/en/insidethelab/raspberry-robin-and-its-new-anti-emulation-trick/
https://web.archive.org/web/20240727145128/https://harfanglab.io/en/insidethelab/raspberry-robin-and-its-new-anti-emulation-trick/

Checksum counter

The counter is compared to check if there are at least 85 unique processes running on the machine.

With the assumption that a true infected computer would have more running processes rather

than a sandbox or emulator that is trying to be as lightweight as possible to reduce noise and costs.

This technique has been employed by other malware also, such as Latrodectus.

When the check has passed, the next stage of the payload will be decoded and executed.

https://blog.reveng.ai/latrodectus-distribution-via-brc4/
https://blog.reveng.ai/latrodectus-distribution-via-brc4/

Second stage of decryption
Donut Loader and Payload

The next stage in this chain is a Donut loader. This is used to unpack and execute the final payload
in memory. Donut loaders have been used by many different malware and threat groups in their
operations. The payload in this sample is a WhiteSnake stealer.

WhiteSnake Payload

This payload has a very interesting method of communication with its Command and Control (C2)
server over TOR. The C2 communication is described in further detail in a blog from JFrog in
2023, but instead of downloading from the official TOR Project website. The payload is
downloaded from this github repository.

Open source project downloaded by WhiteSnake

In other samples, Meduza stealer has also been observed. There may be other stealer payloads

delivered that have not been observed yet.

Considerations for Defense

The use of loaders is a long-standing technique incorporated by threat actors. In order for modern
day threat actors to have any success against the many layers of detection employed by security
vendors, they too must incorporate multiple layers of defense within their own builds. It is a never
ending arms race between attacker and defender. Each side imposing increasing costs on the other
in a frantic effort to come out on top, no matter how short that time period may be.

The better that the loaders can protect the ultimate payloads, the less resources threat actors will
need to expend in order to rotate burned infrastructure. BabbleLoader takes measures to protect
against as many forms of detection that it can, in order to compete in a crowded loader/crypter
market. The types of protection utilized protect the loader against hash, rule, genetic, static,

https://github.com/TheWover/donut
https://github.com/TheWover/donut
https://g0njxa.medium.com/approaching-stealers-devs-a-brief-interview-with-whitesnake-2acd8af9d61b
https://g0njxa.medium.com/approaching-stealers-devs-a-brief-interview-with-whitesnake-2acd8af9d61b
https://jfrog.com/blog/new-malware-targets-python-developers-uses-tor-for-c2-communication/
https://jfrog.com/blog/new-malware-targets-python-developers-uses-tor-for-c2-communication/
https://jfrog.com/blog/new-malware-targets-python-developers-uses-tor-for-c2-communication/
https://jfrog.com/blog/new-malware-targets-python-developers-uses-tor-for-c2-communication/
https://github.com/matinrco/tor
https://github.com/matinrco/tor

dynamic, and AI forms of detection, imposing costs upon security vendors in the hope that the cost

of detection will be so high that it will cause security vendors to overlook analyzing these files.

The developer behind this loader demonstrates an active engagement with current security
research, rapidly integrating new techniques to enhance evasion capabilities. For instance, recent
anti-sandboxing features reflect insights from research on Windows Defender presented by white-
hat experts at Black Hat, allowing the loader to better evade detection by Microsoft’s defenses. This
adaptability shows a strategic commitment to keeping the loader ahead of evolving security tools
by adopting the latest innovations in bypass techniques, making it more resilient and harder to
detect with each new build.

Many security vendors will look at using Al to help in future cases with combating these loaders.
The loaders of the future are already well equipped in this fight. The loader’s layered obfuscation
tactics pose a formidable challenge for Al-based defenses. These techniques flood the AI with
irrelevant tokens and misleading patterns, making it difficult to distinguish meaningful actions
from noise. Each layer of complexity forces the AI to process massive amounts of data, drastically
increasing computational and financial costs. By weaponizing this volume and variability, the
loader effectively undermines AI’s pattern recognition and analysis capabilities, pushing the limits
of automated detection systems.

There is no signs of slowing down in the pace in the thriving loader market.

I0Cs

BabbleLoader:
052c776fdco7o00dfb37f964a73d461a57efad3z0ao1bef54505d7abed601e61f3
0oad8513b62a778d7e426627bezed2dbafood9ggbg802a1f566dc9203e3d311fc3
0f6847d33cb38boed6dc1d8cfesdcsd2e293d91c4880e3b4f5ddb77fdgdgedif
114b868f319162c5d6ff92796e41910f54de0e89f895a066fd4980c6dbaz2e323
1367fb270f35512b17fese73cco233ace272daafe15¢f94e45f696431f52332f
1537965¢7722a9886d542688fcbafecd1248b2fbds6e9agoa803a50e880e1bb8
16200bbe4646fe8cefeeesbe20ce55¢50300485f3356ab181fbg30bd02536709
1dagde2bgb87bff7fof1a3208c5c663a06f7fgb67f918e5a5e8e860e759b7075
200289d5a408a2e49a894228edb3324548ca5c5c0283d09486aa287df41f15bc
217d7501287ae894f47bd04253bd184d1901dd131bocd1s5bcbbebas158049d5d
22866e6ded40916de8002606{82e44ee141f27¢3340fa2c4d16514624ee05a72

237812322bbbcf47feeb79b8e91bg7do0453ffd5debs52e¢819¢183bg45d18bobsa

25923b822e9a1374817caf79375170bg44f2762b1e3f2addg21008ffec702740
2a8a340fcoc395fe23211ac95d124b64452d49c67b069f53aaf3dbe16e95791d
2b6bff7b8c23f1fag26e116¢7577¢32845d5b969c68a66850c305a351adcg726
2d6b50003436ed489d1b46566eb879e317e1bgasb6edbi12f3cbbgc8a8d932a08
2eab850166944175e5fac4c89706328a58dcef55dbe22ff20342d1d246ba76bg
2ee32¢46207119f6851f2869203124c104c72cfdf9622416252ae3405f485cd2
328d92b71034d74c016b1f8e70217be3f432a2ade8feq4522f84980fdodbbifg
33e42e7828cda7987d17342e0eb8134f590cd3d291dbe75f13334259a4908ba1
3bfsfo7059a24fb803c6fefb874f000e9c300372b1b870e48b4935bdo219fe2b
401209ec9dda222984fdscb775a6b6c2e651d88co4a506c9058cbidecdce869d
451e1bec8476a89c7d2b526071fa2918187f2f5b3bag362e6999114993a74das
455cdodb2deg2ee348295780f8fc7az2a5406a5986a4d162761680f11b6346b1
466a8af8dobsi1ed82aec35b17b845e6baf77adaz259aa2fd5591024a01d8e31bs
46b355d25bg5d7fod7029f1ee1a346028e3c5bdecge6c9245c¢12d1607¢b1c686
46foe19ocd346di1eb6doc27386bb3aceebf4ad44b25d253cac4063e2ccdego28
478eb22a1f1be2ef6e70625cf42ca61¢716389135acbb705c0e21focf330bf46
47a71eb0o78b14a92ebsfbggof606aa48e535860afgoebese075¢8b2e4d829633
4b7ta864007357e3e799eeb4a9630425652178551a9¢37181fc6ea86660af814
4bags478eanac78e038d30693fabfg5244bd70e40b36b2a928f3854551d6fa78
4bed4960a896ebeafagag421d7ecf389205a2f0216ad911bdcd80f28237159e6
4e40aaddf718b70f397d449f8cagas77efo106f281ccbs0fobscdes31b758881
5305556bee271232973a9e09c¢4776a3b386964112785db638b225b2cc61dgafy
53e451750c099f33f80a3652d9f2a804390deof867af13ae22adofbf4b15f8c3
5493fa6f2ab69da66352532b2c13e7e461bcdebeec2810a6f6af88e139ddelaey
5665c96975c959b5e8057b7aed46f7c203335aefa35f5e290¢538e9300e3e293
5b9481d9o22boefcaed04513d338048degaa3e1328bacc0966486ef322c0do86
5eb3bb67656d99oceeco7f55¢78dcd8032a7cfooacg19a399e3642b177f68381
60ecef2d0ag66dbg13bff15872c072175b895e16271351c43e5a0cfoe4018f22

643ddes3f461907a94f145b3cd8fe37dbad63aec85a4e5ed759fe843bg214a8d2

69ad389722dd8b49590b2aa014f703b39737894073¢7339€a44c94d296€00273

78f6¢822cee2b0587df145d67478ccesbbeb76147a7846do8b7b6fdogaazbce2
796¢245c5bb1e7cideds2c4e8f83e1c707e391f6409ee9bse1dd18658ffoeosf
7df313618a02e8e9961ddb1c3289956eb18361f1cagfb639d64a00fae7568a4b
7e5bagescccicb52d24c21¢6d378a32bb540a8519789d8cf796e5dd351fc6958
8907a8454ef56d64bf788b9gc8c64bbaaf187be7a9666d8d8331fd187¢49c6031
8a28e457b19060678d5d007b291722e1deag2f69249e1588casbg7ebife10807
8cc2e1104480875ee237bf4cagf3d83e46ca213f5c88dfgsbeod78e05¢7c2d71
8cf8bea6842219e565720919372e4aa530942b28d533231043ee57e7bb424cbe
8d8c3b6bbe212ce645566311ce95adgad3aad37795042882adefdag716deb2eab
8e63b1f7f8e29bga714f796e2e8caocd1094086e2doasde21601e23€e1792a906
9125c13250a14905a4fdg7978a3a6dbba8odfo1e73d98f8d4fa2d1gbg49dofdao
9314ea889fg3dascd39129840a42bd5f228538686a2345f56e757e5a5d956dee
gbf7ao1254fed809eof564f28a3cf54156€a98f85d3b633ae3a213a87f9db143
9dfb8ed499b667d782ae3a4ce40472893a789ed973f48884b47358536b6a76e8
ofa7574f35fae3d309c8cefeoe8agq3do7aftb6cefaceocaazb2538263bdgayecs
aon1ac4244102e3958296c¢70d71e3d951f11abec355458d1918do81587b151d9o
ao8db4c7b7bacc2bacdiegaoac7fbbg1306bf83c279582f5ac3570a90e8bof87
a29e108e912¢77ed565873bd205dao1edoe6001d18b442139¢c06827428d2eba1
a3b45619606d4c3c487047786e3d51a98fdccifdeq43de7b6f6e80974fdoagegy
a695cb493631962a4c2fd61a094cbobgs2ce708a99af714772cddd4991f32dfo
aebeebbf2f9890ed83922e5¢80770dd88faagb32b2211462ea2eed29bfibf6cs
b14af38c4230de20c7c4fefec1esesffftbis62bacedfebes6a508f55182a6fe88
biebe1794e091fd82a34d6806f18f64ebadbsd3b2343a661c481fb7c54cb872f
b2ag1277e5fb40a0a38215142f683554b4e7c03ccd439e0do56c56bo31a5becs
b72d9ae8484bg1ec9c6167e6707617f495622f3b684f6b3e30b29106891c778b
bb4f812f8bb4e7b33d7b583407370a5351d079f63b26956adc7ab317b3d9o601
bdd6bd29937059dd944fb09163a24e4482c5ce420d3de749e5e46c6c25b2ea86

c2ags5f22cfee1f4df67a424e30425b59c23db265bff611f2ee653d71b30a70d8

ca67f61b5f8d20ec3f45dbbfc355045a8ceee15396f1cado32850a3ee23a42b3
cd3fo64do88a3zababado3dai148701fb6b660866b8aac2a808359505620166641
d7967661947ca835deddec3zoae6e62d580718cbdeafbg2cd6dofo38a407edcfo
dgcea34dbodidco16dd4007d8cd11416f095¢c41b0639f13af1ebb6ad675651df2
db282cae419ed5af3338f65f170ecd7b312cac2500b5cb2c8824721bag81c361
dbg1e032193beccog7doda85cac74cfif519b85cf731f783ccealicie2oad23f
e09c36993e1c29b6befofic73en2aee54686c0df49b6d87bs77e70f261313acaf
e13f20752f6298728ac0463a3f4b0657d5657ca7710e63a27ac1179078ac71f6
e1448680114cb3ddo6aa81a3b1037f77e6d5b3f6dce213aa38cffdec72d59e74
fof23a963952c1a822484382bf4c68cd8b7278400ad2d8bacf3235ba2fc42a89
fa292bfef81223babof79d4ce08187e37d68960005629df0241ea22fobgsd7a8
fc589aa3529a057fee52a1cogbdgbbigfag2bbfd291b7dbb3791e77eced376640
ffcae0093d509563b47b1docef3aaq55a4358de3a1d2c2b84c298a927aa238e8
WhiteSnake Stealer:

6dcego24ec032390ca4294f62cb282a09291cf141cboo3f7eoef23bb7azgbfae

Ryan Robinson

Ryan is a security researcher analyzing malware and scripts. Formerly, he was a researcher on

Anomali's Threat Research Team.

